247,129 research outputs found

    The complexity and generality of learning answer set programs

    No full text
    Traditionally most of the work in the field of Inductive Logic Programming (ILP) has addressed the problem of learning Prolog programs. On the other hand, Answer Set Programming is increasingly being used as a powerful language for knowledge representation and reasoning, and is also gaining increasing attention in industry. Consequently, the research activity in ILP has widened to the area of Answer Set Programming, witnessing the proposal of several new learning frameworks that have extended ILP to learning answer set programs. In this paper, we investigate the theoretical properties of these existing frameworks for learning programs under the answer set semantics. Specifically, we present a detailed analysis of the computational complexity of each of these frameworks with respect to the two decision problems of deciding whether a hypothesis is a solution of a learning task and deciding whether a learning task has any solutions. We introduce a new notion of generality of a learning framework, which enables us to define a framework to be more general than another in terms of being able to distinguish one ASP hypothesis solution from a set of incorrect ASP programs. Based on this notion, we formally prove a generality relation over the set of existing frameworks for learning programs under answer set semantics. In particular, we show that our recently proposed framework, Context-dependent Learning from Ordered Answer Sets, is more general than brave induction, induction of stable models, and cautious induction, and maintains the same complexity as cautious induction, which has the highest complexity of these frameworks

    Exploring ILASP Through Logic Puzzles Modelling

    Get PDF
    ILASP (Inductive Learning of Answer Set Programs) is a logic-based machine learning system. It makes use of existing knowledge base, containing anything known before the learning starts or even previously learned rules, to infer new rules. We propose a survey on how ILASP works and how it can be used to learn constraints. In order to do so we modelled different puzzles in Answer Set Programming: the main focus concerns how different datasets can influence the learning algorithm and, consequently, what can or cannot be learnt

    Justifications and Blocking Sets in a Rule-Based Answer Set Computation

    Get PDF
    Notions of justifications for logic programs under answer set semantics have been recently studied for atom-based approaches or argumentation approaches. The paper addresses the question in a rule-based answer set computation: the search algorithm does not guess on the truth or falsity of an atom but on the application or non application of a non monotonic rule. In this view, justifications are sets of ground rules with particular properties. Properties of these justifications are established; in particular the notion of blocking set (a reason incompatible with an answer set) is defined, that permits to explain computation failures. Backjumping, learning, debugging and explanations are possible applications

    Answer Set Programming with External Sources

    Get PDF
    Answer Set Programming (ASP) is a well-known problem solving approach based on nonmonotonic logic programs and efficient solvers. To enable access to external information, HEX-programs extend programs with external atoms, which allow for a bidirectional communication between the logic program and external sources of computation (e.g., description logic reasoners and Web resources). Current solvers evaluate HEX-programs by a translation to ASP itself, in which values of external atoms are guessed and verified after the ordinary answer set computation. This elegant approach does not scale with the number of external accesses in general, in particular in presence of nondeterminism (which is instrumental for ASP). Hence, there is a need for genuine algorithms which handle external atoms as first-class citizens, which is the main focus of this PhD project. In the first phase of the project, state-of-the-art conflict driven algorithms were already integrated into the prototype system dlvhex and extended to external sources. In particular, the evaluation of external sources may trigger a learning procedure, such that the reasoner gets additional information about the internals of external sources. Moreover, problems on the second level of the polynomial hierarchy were addressed by integrating a minimality check, based on unfounded sets. First experimental results show already clear improvements

    Inductive logic programming at 30

    Full text link
    Inductive logic programming (ILP) is a form of logic-based machine learning. The goal of ILP is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. As ILP turns 30, we survey recent work in the field. In this survey, we focus on (i) new meta-level search methods, (ii) techniques for learning recursive programs that generalise from few examples, (iii) new approaches for predicate invention, and (iv) the use of different technologies, notably answer set programming and neural networks. We conclude by discussing some of the current limitations of ILP and discuss directions for future research.Comment: Extension of IJCAI20 survey paper. arXiv admin note: substantial text overlap with arXiv:2002.11002, arXiv:2008.0791
    • …
    corecore