350 research outputs found

    On Three Generalizations of Contraction

    Full text link
    We introduce three forms of generalized contraction (GC). Roughly speaking, these are motivated by allowing contraction to take place after small transients in time and/or amplitude. Indeed, contraction is usually used to prove asymptotic properties, like convergence to an attractor or entrainment to a periodic excitation, and allowing initial transients does not affect this asymptotic behavior. We provide sufficient conditions for GC, and demonstrate their usefulness using examples of systems that are not contractive, with respect to any norm, yet are GC

    Non-Euclidean Contraction Theory for Robust Nonlinear Stability

    Full text link
    We study necessary and sufficient conditions for contraction and incremental stability of dynamical systems with respect to non-Euclidean norms. First, we introduce weak pairings as a framework to study contractivity with respect to arbitrary norms, and characterize their properties. We introduce and study the sign and max pairings for the β„“1\ell_1 and β„“βˆž\ell_\infty norms, respectively. Using weak pairings, we establish five equivalent characterizations for contraction, including the one-sided Lipschitz condition for the vector field as well as matrix measure and Demidovich conditions for the corresponding Jacobian. Third, we extend our contraction framework in two directions: we prove equivalences for contraction of continuous vector fields and we formalize the weaker notion of equilibrium contraction, which ensures exponential convergence to an equilibrium. Finally, as an application, we provide (i) incremental input-to-state stability and finite input-state gain properties for contracting systems, and (ii) a general theorem about the Lipschitz interconnection of contracting systems, whereby the Hurwitzness of a gain matrix implies the contractivity of the interconnected system

    Biological control via "ecological" damping: An approach that attenuates non-target effects

    Get PDF
    In this work we develop and analyze a mathematical model of biological control to prevent or attenuate the explosive increase of an invasive species population in a three-species food chain. We allow for finite time blow-up in the model as a mathematical construct to mimic the explosive increase in population, enabling the species to reach "disastrous" levels, in a finite time. We next propose various controls to drive down the invasive population growth and, in certain cases, eliminate blow-up. The controls avoid chemical treatments and/or natural enemy introduction, thus eliminating various non-target effects associated with such classical methods. We refer to these new controls as "ecological damping", as their inclusion dampens the invasive species population growth. Further, we improve prior results on the regularity and Turing instability of the three-species model that were derived in earlier work. Lastly, we confirm the existence of spatio-temporal chaos

    Lipschitz regularized gradient flows and latent generative particles

    Full text link
    Lipschitz regularized f-divergences are constructed by imposing a bound on the Lipschitz constant of the discriminator in the variational representation. They interpolate between the Wasserstein metric and f-divergences and provide a flexible family of loss functions for non-absolutely continuous (e.g. empirical) distributions, possibly with heavy tails. We construct Lipschitz regularized gradient flows on the space of probability measures based on these divergences. Examples of such gradient flows are Lipschitz regularized Fokker-Planck and porous medium partial differential equations (PDEs) for the Kullback-Leibler and alpha-divergences, respectively. The regularization corresponds to imposing a Courant-Friedrichs-Lewy numerical stability condition on the PDEs. For empirical measures, the Lipschitz regularization on gradient flows induces a numerically stable transporter/discriminator particle algorithm, where the generative particles are transported along the gradient of the discriminator. The gradient structure leads to a regularized Fisher information (particle kinetic energy) used to track the convergence of the algorithm. The Lipschitz regularized discriminator can be implemented via neural network spectral normalization and the particle algorithm generates approximate samples from possibly high-dimensional distributions known only from data. Notably, our particle algorithm can generate synthetic data even in small sample size regimes. A new data processing inequality for the regularized divergence allows us to combine our particle algorithm with representation learning, e.g. autoencoder architectures. The resulting algorithm yields markedly improved generative properties in terms of efficiency and quality of the synthetic samples. From a statistical mechanics perspective the encoding can be interpreted dynamically as learning a better mobility for the generative particles
    • …
    corecore