234 research outputs found

    Decentralized Riemannian Particle Filtering with Applications to Multi-Agent Localization

    Get PDF
    The primary focus of this research is to develop consistent nonlinear decentralized particle filtering approaches to the problem of multiple agent localization. A key aspect in our development is the use of Riemannian geometry to exploit the inherently non-Euclidean characteristics that are typical when considering multiple agent localization scenarios. A decentralized formulation is considered due to the practical advantages it provides over centralized fusion architectures. Inspiration is taken from the relatively new field of information geometry and the more established research field of computer vision. Differential geometric tools such as manifolds, geodesics, tangent spaces, exponential, and logarithmic mappings are used extensively to describe probabilistic quantities. Numerous probabilistic parameterizations were identified, settling on the efficient square-root probability density function parameterization. The square-root parameterization has the benefit of allowing filter calculations to be carried out on the well studied Riemannian unit hypersphere. A key advantage for selecting the unit hypersphere is that it permits closed-form calculations, a characteristic that is not shared by current solution approaches. Through the use of the Riemannian geometry of the unit hypersphere, we are able to demonstrate the ability to produce estimates that are not overly optimistic. Results are presented that clearly show the ability of the proposed approaches to outperform current state-of-the-art decentralized particle filtering methods. In particular, results are presented that emphasize the achievable improvement in estimation error, estimator consistency, and required computational burden

    Second-order statistics analysis and comparison between arithmetic and geometric average fusion: Application to multi-sensor target tracking

    Get PDF
    Two fundamental approaches to information averaging are based on linear and logarithmic combination, yielding the arithmetic average (AA) and geometric average (GA) of the fusing data, respectively. In the context of multisensor target tracking, the two most common formats of data to be fused are random variables and probability density functions, namely v-fusion and f-fusion, respectively. In this work, we analyze and compare the second-order statistics (including variance and mean square error) of AA and GA in terms of both v-fusion and f-fusion. The case of weighted Gaussian mixtures representing multitarget densities in the presence of false alarms and missed detections (whose weight sums are not necessarily unit) is also considered, the result of which turns out to be significantly different from that of a single target. In addition to exact derivation, exemplifying analyses and illustrations are also provided.This work was supported in part by the Marie Skłodowska-Curie Individual Fellowship under Grant 709267, in part by Shaanxi Natural Fund under Grant 2018MJ6048, in part by the Northwestern Polytechnical University, and in part by Junta Castilla y León, Consejería de Educación and FEDER funds under project SA267P18

    Information measures in distributed multitarget tracking

    Get PDF
    In this paper, we consider the role that different information measures play in the problem of decentralised multi-target tracking. In many sensor networks, it is not possible to maintain the full joint probability distribution and so suboptimal algorithms must be used. We use a distributed form of the Probability Hypothesis Density (PHD) filter based on a generalisation of covariance intersection known as exponential mixture densities (EMDs). However, EMD-based fusion must be actively controlled to optimise the relative weights placed on different information sources. We explore the performance consequences of using different information measures to optimise the update. By considering approaches that minimise absolute information (entropy and Rényi entropy) or equalise divergence (Kullback-Leibler Divergence and Rényi Divergence), we show that the divergence measures are both simpler and easier to work with. Furthermore, in our simulation scenario, the performance is very similar with all the information measures considered, suggesting that the simpler measures can be used. © 2011 IEEE

    Pattern-theoretic foundations of automatic target recognition in clutter

    Get PDF
    Issued as final reportAir Force Office of Scientific Research (U.S.
    corecore