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Second Order Statistics Analysis and Comparison
between Arithmetic and Geometric Average Fusion

Tiancheng Li, Hongqi Fan, Jesús G. Herrero and Juan M Corchado

Abstract—Two fundamental approaches to information averag-
ing are based on linear and logarithmic combination, yielding the
arithmetic average (AA) and geometric average (GA) of the fusing
initials, respectively. In the context of target tracking, the two
most common formats of data to be fused are random variables
and probability density functions, for which the corresponding
fusion is referred to as v-fusion and f -fusion, respectively. In
this work, we analyze and compare the second order statistics
(including variance and mean square error) of AA and GA in
terms of both v-fusion and f -fusion. The AA and GA fusion of
weighted Gaussian mixtures (whose weight sum is not necessarily
unit) is also considered. The analysis is given by means of exact
derivation or through exemplifying/numerical illustration.

Index Terms—Data fusion, average consensus, Chernoff fusion,
arithmetical mean, covariance intersection.

I. INTRODUCTION

The rapid development and extensive deployment of sen-
sor/agent networks, have stemmed remarkable interest in dis-
tributed data fusion. Decentralization of information fusion has
evident advantages and allows the exchange of information of
netted platforms in an efficient, flexible and scalable way. For
example, in the context of target tracking using a decentralized
sensor network, the sensor cooperation can compensate for the
mis-detection and failure of a local sensor and overcoming
the limitation of the local field of view, gaining improved
estimation accuracy and improved robustness. Particular inter-
est in distributed data fusion has been paid to calculating the
“average” over the information owned by local sensors/agents
via network communication [1]–[5]. Fundamentally, the aver-
age can be defined in two manners including, the arithmetic
average (AA) and the geometric average (GA). Simply put,
the former is a type of linear/convex fusion, akin to the linear
opinion pool approach, while the latter is nonlinear/logarithmic
fusion akin to the logarithmic opinion pool approach [6], [7].

In the context of multi-sensor/multi-agent target tracking,
the two most important types of information for fusion among
local sensors/agents are random variables (representing param-
eters such as the number of targets, clutter rate, etc.) and
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probability density functions (PDFs), for which the fusion
is referred to as v-fusion and f -fusion, respectively. In the
latter, the GA fusion coincides with the Chernoff fusion
[8], [9], which is also known as (generalized) covariance
intersection (CI) [10]–[15]. The CI approach was originally
proposed for fusing correlated estimates produced at distinct
but not necessarily independent sensors when, unfortunately,
the correction is unknown. The fundamental property of the CI
approach is keeping consistency or conservativeness, avoiding
double accounting any information in the fusion [10], [11],
[16]. In direct relation with this approach, the Chernoff Infor-
mation of a pair of distributions quantifies the best achievable
exponent in the Bayesian probability of error [11]e. Therefore,
the approach (more generally) is also known as Chernoff
fusion. Further approaches to the combination of probability
distributions in the presence of unknown correlation can be
found in [16], [17].

In addition to the Bayesian posterior PDF, the fusing
functions can also be the likelihood functions [18]–[20] or
the probability hypothesis density (PHD)/intensity functions
[21]–[27]. (The PHD [28] differs from the PDF in that its
integral over any region gives the expected number of targets
in that region which can be any real number.) In comparison,
the AA fusion has also been applied for PHD fusion [29]–
[35] and for raw data fusion in the means of clustering
[36], [37]. Both averaging approaches to data fusion have
demonstrated, either theoretically or experimentally, gains in
estimation accuracy and/or robustness, whereas weaknesses
have also been identified from different viewpoints [6], [7],
[22], [26], [32]–[34], [38]–[41].

Despite a few analysis about the variance alone of the
GA/CI [11], [14], [21] and of the AA [38] in f -fusion and
about the mean square error (MSE) of the AA [35] for
uncorrected v-fusion, comprehensive analysis and comparison
of the statistics (including the variance and MSE) of both
approaches, are still lacking. Therefore, it is actually not so
transparent how different they are and how they compare with
the fusing estimator.

In this paper, we are not intended to investigate the motiva-
tion behind both approaches, or propose any new algorithms.
Rather, we analyze and compare the statistics of the GA and
of the AA, with respect to v-fusion and f -fusion, respectively.
The analysis is based on the classic estimation perspective.
In addition to analytic analysis, approximate analysis or ex-
emplifying illustration (mainly based on the most common
Gaussian assumption) are also given. For simplicity, we restrict
our discussion in the scalar real space R.

The paper is organized as follows. Preliminaries are briefly
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introduced in Section II. Our major analysis of the v-fusion
and of the f -fusion is given in sections III and IV, respectively.
A hybrid use of both approaches for averaging Gaussian mix-
tures is discussed in Sec.V, which shows further comparison
between v-fusion and f -fusion. Key findings are summarized
by Remarks throughout the paper and in Section VI.

II. PRELIMINARIES

A. Definitions
For the unknown parameter θ of interest that takes value in

a measurable region ×⊆R, the estimator θ̂i associated with
PDF fθ̂i(x), is unbiased if it yields, on average, the true value
of the parameter [42, Sec. 2.3], i.e.,

θ̄i , Efθ̂i
[θ̂i] =

∫
×
xfθ̂i(x)dx = θ. (1)

The variance of the estimator θ̂i is given as

Σθ̂i ,
∫
×

(
x− θ̄i

)2
fθ̂i(x)dx =

∫
×
x2fθ̂i(x)dx−

(
θ̄i
)2
. (2)

where fθ̂i(x) denotes the PDF of the estimator θ̂i.
The MSE of an estimator θ̂i is given as [42, Sec. 2.4]

mse(θ̂i) , Efθ̂i (x)[(θ − θ̂i)2] =

∫
×

(θ − x)2fθ̂i(x)dx. (3)

Straightforwardly, an expansion of (3) will lead to

mse(θ̂i) = Σθ̂i + (θ̄i − θ)2. (4)

That is, the MSE of an estimator equals the sum of its variance
and the square of its bias (if any).

Furthermore, suppose that f : X → R is a real-valued
function whose domain is a set X . The set-theoretic support
of f , denoted as supp(f), is the set of points in X where f
is non-zero, i.e.,

supp(f) = {x ∈ X|f(x) 6= 0}. (5)

B. Averaging in Terms of Variables: v-fusion
Let us consider estimators θ̂i, i ∈ I ⊆ N given in terms of

random variables, such as the estimate of the number of targets
[35]. There is no PDF or uncertainty information available and
so only point estimates that are random variables are involved.
Their variable-AA is given as

θ̂AA
v ,

∑
i∈I

ωiθ̂i. (6)

Hereafter, the fusing weights ωi ∈ (0, 1),
∑
i∈I ωi = 1.

(Obviously, ωi = 0 indicates that information i does not really
get involved in the fusion.)

In contrast to (6), the variable-GA is given as

θ̂GA
v ,

∏
i∈I

θ̂ωii . (7)

Note that, the variable-GA fusion may lead to an imaginary
number when the fusing variable is negative, which is beyond
the consideration of this work.

Obviously, the GA fusion amounts to the AA fusion on the
logarithms of the variables, namely, (cf. (6))

log θ̂GA
v =

∑
i∈I

ωi log θ̂i. (8)

C. Averaging in Terms of PDFs: f-fusion

When the local estimator–e.g., a Bayesian estimator–is
given as a function such as a PDF or a PHD, the f -fusion
is involved. Given estimators θ̂i with PDFs fθ̂i(x), i ∈ I,
their PDF-AA is given as

fθ̂AA
(x) =

∑
i∈I

ωifθ̂i(x). (9)

and the PDF-GA is given as

fθ̂GA
(x) = C−1

∏
i∈I

(
fθ̂i(x)

)ωi
, (10)

where C ,
∫
×
∏
i∈I
(
fθ̂i(x)

)ωi
dx is a normalization term to

ensure the result being a PDF (if possible). (In the generalized
GA fusion applied to the PHDs [21], [22], such a normaliza-
tion is unnecessary. But then, the fused result of two PDFs
(that can be viewed as two specific PHDs with unit cardinality)
may not be a PDF [22]. )

Due to the nonnegative definiteness of the probability, the
support of the AA fusion PDF is the union of those of all initial
PDFs. In contrast, the support of fθ̂GA

(x) is the intersection
of those of all initial PDFs, which may be empty. We leave
any further discussion on this point and we assume all fusing
estimators have the same support unless otherwise stated.

III. AVERAGING OVER VARIABLES: v-FUSION

A. Variance Analysis

The variance of a weighted sum of multiple variables is
given by the weighted sum of their covariances [43], i.e.,

Σθ̂AA
v

=
∑
i∈I

∑
j∈I

Cov(ωiθ̂i, ωj θ̂j)

=
∑
i∈I

ω2
iΣθ̂i +

∑
i<j∈I

2ωiωjCov(θ̂i, θ̂j). (11)

Here, Cov(θ̂1, θ̂2) denotes the correlation between θ̂1 and θ̂2.
Let us consider two variables for simplicity and define

ρ ,
Cov(θ̂1, θ̂2)√

Σθ̂1Σθ̂2
. (12)

Then, (11) reduces to

Σθ̂AA
v

= ω2
1Σθ̂1 + ω2

2Σθ̂2 + 2ω1ω2ρ
√

Σθ̂1Σθ̂2 . (13)

Here, −1 ≤ ρ ≤ 1 is known as the correlation coefficient
[44, Chapt. 4] between two variables. For two independent
variables, ρ = 0 and for two identical variables, ρ = 1.

We now analyze the bounds of Σθ̂AA
v

. First, it is easy to be

verified that Σθ̂AA
v
≤
(
ω1

√
Σ1 + ω2

√
Σ2

)2 ≤ max(Σ1,Σ2).
That is, we have the upper bound of Σθ̂AA

v

Σθ̂AA
v
≤ max(Σ1,Σ2), (14)

where the bound is approached when w1 → 0 (if Σ1 ≤ Σ2)
or w1 → 1 (if Σ1 ≥ Σ2).

To derive the lower bound of Σθ̂AA
v

, we further define

α ,
Σ2

Σ1
.
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Due to the symmetry of the expression of Σθ̂AA
v

, we only
consider α ≥ 1 in our analysis; the results hold by exchanging
Σ2 with Σ1 if α < 1. We define a convex function of w ∈
(0, 1) as follows

h(w;α, ρ) , 1− 2w + w2 + w2α+ 2ρα
1
2 (w − w2). (15)

In what follows, we write h(w;α, ρ) as h(w) for short. So,
we have Σθ̂AA

v
= h(ω2)Σ1.

Bound analysis of the function h(w) is given in Appendix
A. As shown, if ρ < α−

1
2 , the optimal fusing weights that

correspond to the minimum h(w) are given by (cf. (47))

ω1 =
α− ρα 1

2

1 + α− 2ρα
1
2

, ω2 =
1− ρα 1

2

1 + α− 2ρα
1
2

, (16)

The corresponding lower bound of Σθ̂AA
v

is given by

Σθ̂AA
v
≥ α(1− ρ2)

1 + α− 2ρα
1
2

Σ1. (17)

Otherwise (if ρ ≥ α− 1
2 ), the lower bound is given as

Σθ̂AA
v
≥ min(Σ1,Σ2), (18)

where the bound is approached when w1 → 1 (if Σ1 ≤ Σ2)
or w1 → 0 (if Σ1 ≥ Σ2).

Remark 1. For v-fusion, the variance of the AA is upper
bounded by the greatest variance of the fusing estimators. Its
lower bound as given in (17) is smaller than the smallest
variance of the fusing estimators if the correlation coefficient
between two fusing estimator satisfies

Cov(θ̂1, θ̂2)√
Σθ̂1Σθ̂2

<

(
min

(
Σ1,Σ2

)
max

(
Σ1,Σ2

)) 1
2

, (19)

otherwise, the lower bound is given by the smallest variance
of the fusing estimators.

Notably, when these two variables are inversely correlated
namely Cov(θ̂1, θ̂2) < 0, (19) always holds.

On the other hand, to calculate Σθ̂GA
v

, substituting
θ̂AA
v , θ̂i, i ∈ I in (11) with logθ̂GA

v , logθ̂i, i ∈ I (cf. (8)),
respectively, yields

Σlogθ̂GA
v

=
∑
i∈I

∑
j∈I

Cov(ωilogθ̂i, ωj logθ̂j)

=
∑
i∈I

∑
j∈I

ωiωjCov(logθ̂i, logθ̂j). (20)

The above formulation involves the calculation of the covari-
ance between (logarithmic) functions of two random variables,
which can be addressed in terms of the cumulative distribution
function; for the detail the reader is kindly referred to [45]. We
omit further analytic analysis on this mathematical problem,
but instead, to gain insight and to illustratively compare
between the AA and the GA, we study two representative
examples by means of the Monte Carlo simulation.

1) Numerical analysis for Gaussian v-fusion: Note that the
GA of two Gaussian variables is no longer a Gaussian variable
(unless two fusing variables are identical). For numerical illus-
tration, we here consider two approximate Gaussian distribu-
tions with µ1 = 50,Σ1 = 100, and with µ2 = 60,Σ2 = 200,
respectively, in which the negative support of the Gaussian
PDF (which is actually ignorable in the given examples as
the negative part is far more than 4-sigma to the mean of the
distribution) is truncated and so all samples are guaranteed to
be positively valued in order to avoid the imaginary number
problem of the GA fusion.

Two groups of samples are generated with different correla-
tion coefficients ρ. Correspondingly, the means and variances
of the AA and of the GA are given in Fig. 1. As shown in
the upper right sub-figure, when ρ = 0.70846 > α−

1
2 (as

α = Σ2

Σ1
= 2), we obtain dual bounds of Σθ̂AA

v
as shown in

(18) otherwise (as shown in the other sub-figures) the variances
of the AA can be smaller than the lowest variance of the fusing
estimator. It is further seen that,

Remark 2. The variances of the AA and of the GA can
be either greater or smaller than each other, depending on
the choice of the fusing weights. There is a cross-over of
their values (namely the smaller becomes the greater) as ω1

increases from 0 to 1. For certain ρ and α, the lowest AA
variance that can be yielded by adjusting the fusing weights
is never greater than that of the GA .

2) Numerical analysis for Poisson v-fusion: We further
consider two Poisson variables θ̂1 ∼ Poisson(λ1 = 12) and
θ̂2 ∼ Poisson(λ2 = 10), where λ1 and λ2 are the Poisson rates
which indicate both the mean and variance of the variable.
The Poisson variable is important in the tracking community,
e.g., the number of targets or of false alarms that appear at a
given time-interval is often modeled as a Poisson variable [28],
[46]. Note that both AA and GA of two Poisson variables are
no longer Poisson variables. Once more, we use the Monte
Carlo method for numerical approximation. The means and
variances of the AA and GA of two Poisson random variables
under different correlation coefficient ρs and fusing weights
are given in Fig. 2. The results are highly consistent to what
shown in the Gaussian case (cf. Fig. 1) and the statement given
in Remark 2 still holds.

B. MSE Analysis for AA and Numerical Comparison to GA

In this section, we study the MSE of the AA and nu-
merically compare it with that of the GA, based on general
variables that may be correlated.

Inserting (6) in (3) yields

mse
(
θ̂AA
v

)
=Efθ̂AA

(x)

[(
ω1(θ − θ̂1) + ω2(θ − θ̂2)

)2]
=ω2

1mse(θ̂1) + ω2
2mse(θ̂2)

+ 2ω1ω2β

√
mse(θ̂1)mse(θ̂2), (21)

where β ,
Ef
θ̂AA

(x)

[
(θ−θ̂1)(θ−θ̂2)

]
√

mse(θ̂1)mse(θ̂2)
∈ (−1, 1).

As addressed, the fractional order of a Gaussian variable
may involve imaginary numbers. Therefore, we cannot simply
get the MSE of the GA for v-fusion. To overcome this, once
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Fig. 1. Comparison of the variances of the AA and GA of two correlated, approximate-Gaussian-distributed variables with mean µ1 = 50 and variance
Σ1 = 100, and with mean µ2 = 60 and variance Σ2 = 200, respectively, under three different correlation coefficients ρ and fusing weights w1.
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Fig. 2. Comparison of the variances of the AA and GA of two Poisson-distributed variables with rates λ1 = 10, λ2 = 12 (and so α = λ2
λ1

= 1.2), under
three different correlation coefficients ρ and fusing weights.

more, by means of the Monte Carlo simulation, we consider
two approximate Gaussian variables θ̂1(x) ∼ N (x; 50, 100)
and θ̂2(x) ∼ N (x; 60, 200), for which we simulate three dif-
ferent real variables θ = 45, 55, 65, respectively, for different
βs. The v-fusion results based on different fusing weights
ω1 ∈ (0, 1) are shown in Fig. 3 for the case of two independent
variables and in Fig. 4 for the case of two correlated variable
with correlation coefficient ρ = 0.70736. The results show
that

Remark 3. The MSE of the AA can be either greater or
smaller than that of the GA when different fusing weights are
used. The greatest discrepancy between them occurs when the
fusing weights are at certain points in the scope (0,1). The
lowest bound of the MSE of either the AA or the GA is their
corresponding variances, which are obtained when the fused
estimates turn out to be unbiased which is only possible when
the real parameter lies between two variables. Accordingly,
the lower bound of the MSE of the AA is smaller than that of
the GA.

1) Bounds and Comparison: To gain analytical results on
the MSE of the AA for v-fusion, we define

γ ,
mse(θ̂2)

mse(θ̂1)
.

Then, it can be easily varified that mse
(
θ̂AA
v

)
=

h(ω2)mse(θ̂1), where h(w) is defined in (15) (with ρ and α
replaced by β and γ, respectively). Therefore, analogous to our
analysis in Sec. III-A, lower and upper bounds of mse

(
θ̂AA
v

)
can be obtained by using the same optimal fusing weights ω1

and ω2 as in (47). Akin to Remark 1, we have:

Remark 4. For v-fusion, the upper bound of the MSE of the
AA is given by the greatest MSE of the fusing estimators. The
lower bound is smaller than the smallest MSE of the fusing
estimators if the correlation between two fusing estimators
satisfies

β <

(
min

(
mse(θ̂1),mse(θ̂2)

)
max

(
mse(θ̂1),mse(θ̂2)

)) 1
2

, (22)

otherwise, the lower bound is given by the smallest MSE of
the fusing estimators.

Notably, when the real parameter θ lies on or between θ̄1

and θ̄2 namely E×
[
(θ − θ̂1)(θ − θ̂2)

]
≤ 0 and so β ≤ 0, (22)

always holds.
2) Unweighted AA: The MSE is a key metric in evaluating

an estimator/tracker. However, in practice, γ is often unknown
since the MSE of each fusing estimator that is calculated based
on the real parameter is practically unknown. (In the literature,
e.g., [11]–[13], [15], [24], [33], the most common approach to
designing the fusing weights is based on minimizing the (trace
or determinant of) variance, which only equals the MSE when
the estimator is unbiased.) One may simply choose to use
uniform fusing weights ω1 = ω2 = 0.5, namely unweighted
averaging. Then, we obtain (cf. (15))

h(0.5)|unweighted =
1 + γ + 2βγ

1
2

4
. (23)

In this case, a sufficient and necessary condition for the
un-weighted AA fusion to be “better” than the best fus-
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Fig. 3. Comparison of the MSEs of the AA and of the GA of two independent, approximate Gaussian variables θ̂1(x) ∼ N (x; 50, 100) and θ̂2(x) ∼
N (x; 60, 200), in the case of three different real variables θ = 45, 55, 65, respectively, when different fusing weights are used.
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Fig. 4. Comparison of the MSEs of the AA and of the GA of two approximate Gaussian variables θ̂1(x) ∼ N (x; 50, 100) and θ̂2(x) ∼ N (x; 60, 200)
(with correlation coefficient ρ = 0.70736), in the case of three different real variables θ = 45, 55, 65, respectively, when different fusing weights are used.

ing estimator in the sense of obtaining smaller MSE (i.e.,
h(0.5)|unweighted < 1) is given by (if possible)

β <
3− γ
2γ

1
2

, g(γ). (24)

Calculating the derivative of g(γ) with respect to γ yields

dg(γ)

dγ
=
−1− 3γ−1

4γ
1
2

< 0, (25)

which indicates that g(γ) decreases with the increase of γ, and
therefore, g(γ) < −1,∀γ > 9. Since −1 < β, we therefore
assert that h(0.5)|unweighted < 1 is impossible if γ > 9. In this
case, the MSE of the unweighted AA must lie between the
best and the worst of the MSEs of the fusing estimators.

IV. AVERAGING OVER PDFS: f -FUSION

A. Variance Analysis (for Two Gaussian PDFs)

In this section, we analyze the variances of the PDF-AA
fθ̂AA

(x) and PDF-GA fθ̂GA
(x) for fusing two Gaussian PDFs

fθ̂1(x) = N (x;µ1,Σ1) and fθ̂2(x) = N (x;µ2,Σ2).
1) General Result: In the addressed case, (9) reduces to

a GM-PDF fθ̂AA
f

(x) = ω1N (x;µ1,Σ1) + ω2N (x;µ2,Σ2)

whose mean θ̄AA
f and variance Σθ̂AA

f
are

θ̄AA
f = ω1µ1 + ω2µ2, (26)

Σθ̂AA
f

= ω1Σ1 + ω2Σ2 + ∆(ω1, ω2), (27)

respectively, where ∆(ω1, ω2) , ω1ω2(µ1 − µ2)2 ≥ 0.

In contrast, the GA of two Gaussian PDFs remains a
Gaussian PDF. That is, (10) reduces to a single Gaussian PDF
fθ̄GA
f

(x) = N (x; θ̄GA
f ,Σθ̂GA

f
) with [21]

Σθ̂GA
f

=
Σ1Σ2

ω1Σ2 + ω2Σ1
, (28)

θ̄GA
f =

ω1Σ−1
1 µ1 + ω2Σ−1

2 µ2

ω1Σ−1
1 + ω2Σ−1

2

. (29)

As shown, both the mean of the AA as in (26) and the
mean of the GA as in (29) show a linear combination of the
means of the fusing estimators. Differently, the variances of
the fusing estimators are also involved in the latter but not
in the former. In what follows, we analyze and compare their
variances as in (27) and (28).

2) Bounds and Comparison: Given 0 < ω1, ω2 < 1, we
obtain the dual, tight bounds on Σθ̂GA

f
from (28)

min
(
Σ1,Σ2

)
≤ Σθ̂GA

f
≤ max

(
Σ1,Σ2

)
, (30)

where the equations hold when and only when Σ1 = Σ2 for
which Σθ̂GA

f
= Σ1 = Σ2, regardless of the fusing weights.

Otherwise, if Σ1 6= Σ2, the bounds are approached when ω1 →
0, ω2 → 1 (for one of the dual bounds) or when ω1 → 1, ω2 →
0 (for the other bound).

Since ∆(ω1, ω2) ≥ 0, we obtain

Σθ̂AA
> ω1Σ1 + ω2Σ2 , LB(Σθ̂AA

f
), (31)
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where,thelowerboundof Σ̂θAA
f

isfurtherdually,tightly

boundedby(cf.(30))

min Σ1,Σ2 ≤LB(Σ̂θAA
f

)≤max Σ1,Σ2 .

However,Σ̂θAA
f

cannotbeupperboundedbythevariances

aloneofthefusionestimators,sinceithasacomponent
∆(ω1,ω2)relatedtothediscrepancybetweenthe meansof
twofusingestimators.

Finally,wehavethefollowingderivationfrom(31)

LB(Σ̂θAA
f

)=
ω1Σ1+ω2Σ2 ω1Σ2+ω2Σ1

ω1Σ2+ω2Σ1

=
(ω2

1+ω2
1)Σ1Σ2+ω1ω2(Σ2

1+Σ2
2)

ω1Σ2+ω2Σ1

≥
(ω2

1+ω2
1)Σ1Σ2+2ω1ω2(Σ1Σ2)

ω1Σ2+ω2Σ1

=
Σ1Σ2

ω1Σ2+ω2Σ1
=Σ̂θGA

f
. (32)

Insummary, wehavethefollowingremark(significantly
differenttothecaseofv-fusiongiveninRemark2;numerical
demonstrationwillbegiveninFig.5):

Remark5.For Gaussianf-fusion,theAAfusionalways
leadstoagreatervariancethanthe GAfusiondoeswhen
theyusethesamefusingweightswhilethevarianceofthe
GA,butnotthatoftheAA,isboundedbythesmallestand
greatestvariancesofthefusingestimators.

InflatedvarianceduetoAAorGAhasalsobeenpointed
outby[14],[38],etc.

B. MSEAnalysis

The MSEofθ̂AA
f iscalculatedby(cf.(3))

mse θ̂AA
f =

×

(θ−x)2

i∈I

ωif̂θi
(x)dx

=
i∈I

ωi
×

(θ−x)2f̂θi
(x)dx

=
i∈I

ωimse f̂θi
(x) (33)

whichsimplyindicatesthat(cf.Remark4forv-fusion):
Remark6.TheAAhasanMSEthatisthelinearlyweighted

averageofthe MSEsofthefusingestimatorsandthe MSEof
theAAisboundedbythesmallestandgreatest MSEsofthe
fusingestimators.

Expression(4)providesaneasywaytocalculatethe MSE
ofθ̂GA

f basedon(28)and(29),i.e.,

mse θ̂GA
f =Σ̂θGA

f
+ θ̄GA

f −θ
2

=
Σ1Σ2

ω1Σ2+ω2Σ1
+

ω1Σ−1
1 µ1+ω2Σ−1

2 µ2

ω1Σ−1
1 +ω2Σ−1

2

−θ
2

=
Σ1Σ2

ω1Σ2+ω2Σ1

mse1 θ̂GA
f

+ aξ1+bξ2

2

mse2 θ̂GA
f

. (34)

where a
ω1Σ 1

1

ω1Σ 1
1 +ω2Σ 1

2

∈ (0,1),b
ω2Σ 1

2

ω1Σ 1
1 +ω2Σ 1

2

∈

(0,1),ξ1 µ1−θandξ2 µ2−θ.
Itiseasytobeverifiedthatmse1 θ̂GA

f ≥ min(Σ1,Σ2),

mse2 θ̂GA
f ≥ 0,andsomse θ̂GA

f ≥ min(Σ1,Σ2)where
theequationholdswhenandonlywhenbothfusingGaussian
PDFsareunbiasedandidentical.

Wenowcomparebetween mse θ̂GA
f andmse θ̂AA

f .Inthe
caseoftwoGaussianPDFs,combining(33)and(4)yields

mse θ̂AA
f =ω1Σ1+ω2Σ2

mse1 θ̂AA
f

+ω1ξ2
1+ω2ξ2

2

mse2 θ̂AA
f

. (35)

Wehavethefollowingstraightforwardderivation

ω1Σ1+ω2Σ2 ω2Σ1+ω1Σ2

= ω2
1+ω2

1 Σ1Σ2+ω1ω2 Σ2
1+Σ2

2

≥ ω2
1+ω2

1 Σ1Σ2+2ω1ω2 Σ1Σ2

=Σ1Σ2, (36)

whichindicatesthat

mse1 θ̂GA
f ≤mse1 θ̂AA

f , (37)

aslongasboth AAand GAfusionusesthesamefusing
weights.

Tocomparebetweenmse2 θ̂GA
f andmse2 θ̂AA

f ,wecon-
sidertwospecificcases:First,ifbothfusingGaussianPDFs
areunbiased,i.e.,µ1 = µ2 = θ, wehavemse2 θ̂GA

f =

mse2 θ̂AA
f andfurtherbyusing(37),

min Σ1,Σ2 ≤mse θ̂GA
f ≤mse θ̂AA

f ≤max Σ1,Σ2

wheretheboundsareapproachedwhenthetwofusingweights
approach0and1,respectively.

Secondly,ifΣ1 = Σ2, wehaveω1 = a,ω2 = b.Subse-
quently,thefollowingstraightforwardderivationisobtained

mse2 θ̂GA
f −mse2 θ̂AA

f =−ω1ω2 ξ1−ξ2
2

≤0, (38)

namelymse2 θ̂GA
f ≤ mse2 θ̂AA

f ,aslongastheyusethe
samefusingweights.Combiningthiswith(37)yields

mse θ̂GA
f ≤mse θ̂AA

f .

Remark7.IfbothfusingGaussianPDFsareunbiasedor
iftheyhavethesamevariance,the MSEoftheGAissmaller
thanorequalsthatoftheAAandisalwaysgreaterthanthe
smallestvarianceofthefusingestimators.

Togainfurtherinsightintotheirdifferenceinthegeneral
case,by meansofthe MonteCarlosimulation,weconsider
two Gaussian PDFsf̂θ1

(x) =N(x;µ1 = 50,100)and
f̂θ2

(x) =N(x;µ2 = 60,200)andtwo Gaussian PDFs
f̂θ1

(x) =N(x;µ1 =50,400)andf̂θ2
(x) =N(x;µ2 =

60,200),respectively.TheresultsareshowninFig.5and
Fig.6,respectively,fortherealparameterθ∈[40,80]and
fusingweightω1 ∈(0,1).Itisseenthat(cf.Remark3for
v-fusion)

Remark8.ForGaussianf-fusion,the MSEoftheAAisin
mostcasesgreaterthanthatoftheGA,unlessθisconsider-
ablygreaterthanmax(µ1,µ2)andthefusingestimatorthat
hasagreatermeanhasagreatervariance.Differenttothe
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caseofv-fusion,thereisnocross-overoftheir MSEswhen
thefusingweightschange.Thatis,forcertainPDFsandreal
parameter,oneisalwaysbetterthantheother.

V. AVERAGINGOVERMIXTURES:PHD-FUSION

Inpractice,thevariableθofinterest mayregard multiple
objectsfor whichtheposteriordistributiontobefusedis
“multimodal”,whoseintegralisnomore(butusuallygreater
than)unit,whichistypicallygivenbymeansofamixtureof
multiplesub-functions(eachofwhichcanbereferredtoasa
component)suchasaGM.Inthiscase,whiletheAAofa
sumcanbestraightforwardlyexpressedasacascadedsumof
thefusingsums(afterre-weightingthem)thatremainsinthe
sameform,thefractionalorderexponentialpowerofasum
doesnotremainasasumofthesameform,andtypically
approximationmustberesortedto;see,e.g.,[23],[31],[47]–
[49].Inthefollowing,webrieflyreviewapopular,analytical
approximationapproachto GAfusionof GMsproposedby
[23],etc.andcompareitwiththeAAfusionbymeansofthe
MonteCarlosimulation.

A.ApproximateGM-GAFusion

By omittingthe cross-products of different Gaussian
functions/components(GCs)1,thefractionalorderexponential
powerofaGMconsistingofnGCscanbeapproximatedby

n

i=1

wiN(x;mi,Pi)

ω

≈

n

i=1

[wiN(x;mi,Pi)]
ω

(39)

wherethecovarianceinflationofCI,foraweightedGaussian
PDFisequivalenttoraisingtheGaussianfunctiontoapower,
whichremainsGaussian,namely

[wN(x;m,P)]
ω

=wω (ω,P)N(x;m,
P

ω
) (40)

where (ω,P)= det(2πPω 1)
[det(2πP)]ω = (2πP)(1−ω)ω−1[21].

Inaddition,theproductoftwoGCsremainsaGC,i.e.,

w1N(x;m1,P1)w2N(x;m2,P2)=w12N(x;m12,P12)
(41)

where P12 = (P−1
1 + P−1

2 )−1,m12 = P12(m1P−1
1 +

m2P−1
2 ),w12=w1w2N(m1−m2;0,P1+P2)inwhichthe

coefficientN(m1−m2;0,P1+P2)measurestheseparation
ofthetwoGCs.

Byusing(39),(40)and(41),theGA-fusionoftwoGMs
canthenbeobtained;theinterestedreadersarekindlyreferred
to[23]forthedetail. Wenotethat

1) The GM-GAfusionrequiresfusingallpairsof GCs
betweenneighboringsensors, which willresultina
multipliednumberofGCs.Thatis,theGAof J1GCs
andJ2 GCsisa mixtureofJ1·J2 GCswhileitisa
mixtureofJ1+J2GCsinthecaseofAAfusion.

2) ToperformtheGAfusionasaddressedabove,thelocal
GM-PHDneedstobenormalizedtoaPDF(cf.(39)).At

1Thiscanonly makesenseinthecasewheretheGCsinthe mixtureare
welldistant.Inotherwords,thepeaksinthemultimodaldistributionarewell
distant.Thisisquitelimitedastherearecommonlyclosely-distributedGCs
becauseofcloselydistributedtargets[50].

theend,theresultantGCsneedtobeproperlyweighted,
suchthattheirsumequalstheaverageoftheoriginal
weightsumsofthefusingGMs.Tothisend,anextra
cardinalityconsensusscheme maybeperformed[23],
[35],[50].Thatistosay,thedistributionfusionandthe
cardinalityfusionareperformedseparately.

B. NumericalComparisonbetweenGM-AAandGM-GA

AsaddressedinSec.IIIandSec.IV,the AAperforms
betterinv-fusioninthesenseofyieldingsmallerboundson
thevariance(cf.Remark2)and MSE(cf.Remark3)while
the GAperformsbetterinf-fusioninthesenseofalways
yieldingsmallervariance(cf.Remark5)andsmaller MSEin
mostcases(cf.Remarks7and8).Therefore,weadvocatefor
thePHDfusioninahrbridmeansbyusingbothv-fusion(for
cardinalityfusion)andf-fusion(forthedistributionfusion).
Thisisdifferenttotheusual,pureGM-GAfusion[20],[23],
[25],[51]andpureGM-AAfusion[33],[50].

TogaintheinsightintosuchahybridrulesforGM-PHD
fusion,weconsideranexampleinwhichtwoGMsarefused
inthemannerofunweightedAAfusionandunweightedGA
fusion,respectively.Here,unweightedmeansω1=ω2=0.5.
OneGMreferredtoasGM1isgivenbythreeGCs(ofweight
sum1.8)asfollows

f1(x)=0.7N(x;10,100)+0.6N(x;50,100)

+0.5N(x;90,200), (42)

andtheotherreferredtoasGM2isgivenbytwoGCs(of
weightsum1.7)asfollows

f2(x)=0.9N(x;11,100)+0.8N(x;52,120). (43)

Asshown,thetwoGCsN(x;10,100)andN(x;50,100)in
GM1matchthetwoGCsN(x;11,100)andN(x;52,120)in
GM2,respectively.Theyarelikelyindicatingtworespective
targets.However,thereisoneextraGCN(x;90,200)inGM
1,whichcouldbeeitherafalsealarm(generatedinGM1)or
arealdetection(andthenthereisamisdetectioninGM2)-
wehereafterrefertothisGCasanisolatedGC.Thefusion
resultsaregiveninFig.7inwhichthefusedGM-AAorGM-
GAisgiveninthe mannerofshowingeachGCorshowing
thejointdistributionofthem,wherethejointdistributionis
superimpositionofthoseofeach GCdistributionalongthe
statespace. Weobtainthefollowingtworemarks(thefirstof
whichisconsistentwithRemark5):

Remark9.TheGAfusiongeneratesmoresignificantpeaks
andlightertailsthantheAAfusion.

Remark10.Theisolated GC willsurvive(althoughits
weightedwillbereduced)intheAAfusionbutwillalmost
vanishintheGAfusion;thisindicatesthattheGAfusionhas
bettercapabilitytosuppressfalsealarm(iftheisolatedGCis
afalsealarminpractice)butwillalsosufferfrommisdetection
(iftheisolated GCturnsouttobearealdetection).This
propertyisadouble-edgedsword.

Onemorecommentisinorder.Aswehaveaddressedearlier
inSec.II.C,thesupportoftheAAistheunionofthoseofall
initialfunctionswhilethesupportoftheGAistheintersection
ofthoseofallinitialfunctions.Therefore,assumingthatboth
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Fig. 5. Comparison of the variances and MSEs of the AA and of the GA of two Gaussian PDFs fθ̂1 (x) = N (x; 50, 100) and fθ̂2 (x) = N (x; 60, 200)

regarding different real variables θ ∈ [40, 80], when different fusing weights are used.
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Fig. 6. Comparison of the variances and MSEs of the AA and of the GA of two Gaussian PDFs fθ̂1 (x) = N (x; 50, 400) and fθ̂2 (x) = N (x; 60, 200)

regarding different real variables θ ∈ [40, 80], when different fusing weights are used.

misdetection and false alarms are independent across fusing
GMs, one complete misdetection occurred in one fusing GM
(namely the support of the fusing distribution does not really
cover the position of the corresponding target) will “dominate”
the final GA result (namely the GA must suffer from the
misdetection of that corresponding target), no matter how
significant the detections are in the other fusing GMs and
even how many GMs there are. In fact, this problem becomes
more serious when more sensors/GMs are to be fused in the
GA fusion because a missed detection at any single sensor
can degrade the performance of GA fusion significantly, and
the probability of such a missed detection obviously becomes
larger when more sensors are involved. This, however, is not

a problem to the AA fusion but instead, the more GMs, the
better they compensate for the misdetection occured to a single
fusing GM.

To demonstrate this phenomenon, we consider an example
in which six GMs are fused, as shown in Fig. 8. There are
five targets in total which lie exactly at position 20, 40, 70,
110 and 200, respectively. In our simulation, each target is
either detected with probability 0.9 and generates a detection
at each sensor (which are given in cyan print) or misdetected
with probability 0.1. In addition, at each sensor, false alarms in
each GM (which are marked in magenta print) are uniformly
distributed in the interval [0, 200] and the number of false
alarms is a Poisson random variable with rate 1. Fig. 8 shows
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Fig. 7. Unweighted AA and GA of two GMs consisting of components of different significance/weight. The averaging results namely the AA and the GA
are shown in components and in joint distribution, respectively.

the result for one trial based on the given statistics. In the result
of the GA fusion, it is seen that the target lying at position
70 was mis-detected while the one lying at 200 was almost
mis-detected (as only a low-weighted GC is generated). In the
meanwhile, the detections of targets that lied at position 20 and
40 were mixed. These problems can be overcomed in the AA
fusion which simply reserves all of the peaks (although this
can be another problem). We reiterate that, a potential means
to ameliorate the AA fusion is applying mixture merging and
pruning to reduce the number of GCs/peaks.

Finally, we must stress that it is intractable to analytically
compare between the results of the AA and of the GA for the
PHD fusion in general due to the following two fundamental
issues that remain open:

• Multiple-target state estimate extraction from the fused
mixture/multimodal-PHD that contains information about
a random (unknown) number of targets. Two of the most
common solutions are referred to as Threshold and Rank
rules [52], [53], respectively. In the former, a threshold
is specified in advance and the GCs whose associated
weight is greater than that threshold will all be extracted
as estimates while in the latter, the number of estimates
is determined firstly and the corresponding number of
GCs of the highest associated weights are extracted as
the estimates.

• Estimator evaluation metric that has to take into account
the issues of misdetection, false alarms as well as the
usual point-to-point estimation errors. A matric that has
been widely used in the context of multi-targrt tracking
is referred to the optimal sub-pattern assignment (OSPA)
metric [54]. It, however, penalizes different numbers of
misdetections the same. For example, the OSPA metric
does not distinguish between two estimators, one of
which misses the detection of one target and the other
misses the detection of two (or more) targets, no matter
how accurately they detect the other targets.

VI. CONCLUSIONS

We have analyzed and compared the second order statistics
of the GA and the AA of a set of estimators, in terms of
averaging random variables and the PDFs. The key findings
that we have obtained include:
• For v-fusion,

1) The variance of both AA and GA can be smaller
than the smallest variance of the fusing variables
given proper fusing weights, when the fusing vari-
ables are little or negatively correlated.

2) For any two variables, the lowest AA variance
(namely the lower bound) that can be yielded by
adjusting the fusing weights is smaller than that of
the GA variance.

3) The lowest bound of the MSE of either the AA or
the GA is their corresponding variance, which is
only possible when the real parameter lies between
two variables and proper fusing weights are used.

• For Gaussian f -fusion,
1) The AA fusion always leads to a greater variance

than the GA fusion does, for using the same fusion
weights,

2) The AA has an MSE that is the weighted average
of the MSEs of the fusing estimators (and so it is
bounded by the smallest and greatest MSEs),

3) The GA fusion tends to perform better than the AA
fusion in obtaining smaller MSE in most cases.

• For PHD-fusion based on a hybrid use of f -fusion (for
localization distribution fusion) and v-fusion (for cardi-
nality fusion),

1) The GA fusion generates more significant peaks and
lighter tails than the AA fusion does; in order words,
the GA is comparably more accurate and less robust.

2) The GA fusion has better capability to suppress
false alarm but also suffers from higher risk in
causing misdetection as compared to the AA fusion.
A greater number of fusing sensors leads to greater
problem/gain.
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APPENDIX A: LOWER BOUND OF h(w) AS IN (15)

Here, we analyze the lower bound of function h(w) as
given in (15) for w ∈ (0, 1) and α ≥ 1, ρ ∈ (−1, 1).
Strightforwardly, the derivative of h(w) with respect to w is

dh(w)

dw
=
(
2(α+ 1− 2ρα

1
2 )w − 2 + 2ρα

1
2

)
. (44)

Setting it to zero yields

w =
1− ρα 1

2

1 + α− 2ρα
1
2

, (45)

This, however, may not satisfy the rule that 0 < w < 1 and if
not, cannot be used. We discuss two different cases:

1) ρ < α−
1
2 : In this case, (45) satisfies 0 < w < 1 and

yields

h(w) =
α(1− ρ2)

1 + α− 2ρα
1
2

. (46)

Furthermore, by applying ρ < α−
1
2 , we obtain d2h(w)

dw2 =

2(α + 1 − 2ρα
1
2 ) > 0. This indicates that the bound given

in (46) is indeed the lower bound. That is, if ρ < α−
1
2 , the

optimal fusing weights to get the minimal h(w) are given by

ω1 =
α− ρα 1

2

1 + α− 2ρα
1
2

, ω2 =
1− ρα 1

2

1 + α− 2ρα
1
2

. (47)

2) ρ ≥ α−
1
2 : In this case, w < 0 and so, (45) can not be

used. Considering that h(w) is a convex function of w and
d2h(w)

dw2 > 0, we obtain dual bounds of h(w) at the boundaries
of the support interval of the fusing weights, namely

1 = h(0) < h(w) < h(1) = α.
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[26] M. Üney, J. Houssineau, E. Delande, S. J. Julier, and D. E. Clark,
“Fusion of finite set distributions: Pointwise consistency and global
cardinality,” arXiv:1802.06220 [eess.SP], 2018.

[27] L. Gao, G. Battistelli, L. Chisci, and P. Wei, “Distributed joint sensor
registration and target tracking via sensor network,” Inf. Fusion, vol. 46,
pp. 218 – 230, 2019.

[28] R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget
moments,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1152–
1178, Oct. 2003.

[29] R. L. Streit, “Multisensor multitarget intensity filter,” in Proc. 11th Int.
Conf. Inf. Fusion, Cologne, Germany, Jun. 2008, pp. 1–8.

[30] R. Streit, “Multisensor traffic mapping filters,” in Proc. SDF 2012, Bonn
Germany, Sep. 2012, pp. 43–48.

[31] M. R. Balthasar and A. M. Zoubir, “Multi-target tracking in distributed
sensor networks using particle PHD filters,” arXiv:1505.01668v4, 2015.

[32] J. Y. Yu, M. Coates, and M. Rabbat, “Distributed multi-sensor CPHD
filter using pairwise gossiping,” in Proc. ICASSP 2016, Shanghai, China,
Mar. 2016, pp. 3176–3180.

[33] T. Li, J. Corchado, and S. Sun, “Partial consensus and conser-
vative fusion of Gaussian mixtures for distributed PHD fusion,”
arXiv:1711.10783 [cs.SY], Nov. 2017, revision under review in IEEE
Trans. Aerosp. Electron. Syst.

[34] T. Li, “Distributed SMC-PHD fusion for partial, arithmetic average
consensus,” arXiv:1712.06128 [cs.SY], Dec. 2017.

[35] T. Li, F. Hlawatsch, and P. M. Djuric, “Cardinality-consensus-based PHD
filtering for distributed multitarget tracking,” IEEE Signal Process. Lett.,
pp. 1–1, 2018, dOI:10.1109/LSP.2018.2878064.

[36] T. Li, J. M. Corchado, and H. Chen, “Distributed flooding-then-
clustering: A lazy networking approach for distributed multiple target
tracking,” in Proc. FUSION 2018, Cambridge, UK, Jul. 2018, pp. 2415
– 2422.

[37] T. Li, J. Prieto, H. Fan, and J. M. Corchado, “A robust multi-sensor PHD
filter based on multi-sensor measurement clustering,” IEEE Comm. Lett.,
vol. 22, no. 10, pp. 2064 – 2067, 2018.

[38] R. P. S. Mahler, “The multisensor PHD filter: II. Erroneous solution via
Poisson magic,” in Proc. SPIE, vol. 7336, 2009, pp. 7336 – 12.



T. LI, ET AL. STATISTIC ANALYSIS OF AA AND GA. WORKING PAPER 11

0 100 200 300
State

0

0.05

0.1

0.15
Pr

ob
ab

ilit
y GM 1

0 100 200 300
State

0

0.05

0.1

Pr
ob

ab
ilit

y GM 2

0 100 200 300
State

0

0.05

0.1

Pr
ob

ab
ilit

y GM 3

0 100 200 300
State

0

0.05

0.1

Pr
ob

ab
ilit

y GM 4

0 100 200 300
State

0

0.05

0.1

Pr
ob

ab
ilit

y GM 5

0 100 200 300
State

0

0.05

0.1

Pr
ob

ab
ilit

y GM 6

Real detections
False alarms
Target positions

0 50 100 150 200 250
State

0

0.1

0.2

Pr
ob

ab
ilit

y GM-AA GM-AA distribution
Target positions

0 50 100 150 200 250
State

0

0.1

0.2

0.3

Pr
ob

ab
ilit

y GM-GA GM-GA distribution
Target positions

Fig. 8. Unweighted AA and GA of six GMs consisting of both real detections and false alarms, both of which are given by weighted Gaussian distributions:
the weights indicate the significance of the detections. The number of false alarms at each GM is Poisson distributed with rate 1 and the position of the false
alarm is uniformly distributed in the interval between 0 and 200. There are also potential misdetections in each GM.

[39] S. Mori, K. C. Chang, and C. Y. Chong, “Comparison of track fusion
rules and track association metrics,” in Proc. 15th Int. Conf. Inf. Fusion,
Singapore, Jul. 2012, pp. 1996–2003.

[40] W. Yi, M. Jiang, S. Li, and B. Wang, “Distributed sensor fusion for RFS
density with consideration of limited sensing ability,” in Proc. FUSION
2017, Xi’an, China, Jul. 2017, pp. 1–6.

[41] B. Wang, W. Yi, R. Hoseinnezhad, S. Li, L. Kong, and X. Yang,
“Distributed fusion with multi-Bernoulli filter based on generalized
covariance intersection,” IEEE Trans. Signal Proc., vol. 65, no. 1, pp.
242–255, Jan. 2017.

[42] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[43] S. Ross, Introduction to Probability Models (11th Edition). Boston,
USA: Academic Press, 2014.

[44] J. Cohen, Statistical Power Analysis for the Behavioral Sciences (Revised
Edition). Cambridge, Massachusetts, USA: Academic Press, 1977, pp.
109 - 143.

[45] C. Cuadras, “On the covariance between functions,” Journal of Multi-
variate Analysis, vol. 81, no. 1, pp. 19 – 27, 2002.

[46] S. S. Singh, B.-N. Vo, A. Baddeley, and S. Zuyev, “Filters for spatial
point processes,” SIAM J. Control Optim., vol. 48, no. 4, pp. 2275–2295,
2009.

[47] N. T. N. Mariam, “Conservative non-Gaussian data fusion for decen-
tralized networks,” Master’s thesis, The University of Sydney, Sydney,

Australia, Aug. 2007.
[48] M. Gunay, U. Orguner, and M. Demirekler, “Chernoff fusion of Gaussian

mixtures based on sigma-point approximation,” IEEE Trans. Aerosp.
Electron. Syst., vol. 52, no. 6, pp. 2732–2746, Dec. 2016.

[49] J. Li and A. Nehorai, “Distributed particle filtering via optimal fusion
of Gaussian mixtures,” IEEE Trans. Signal Inf. Process. Netw., vol. 4,
no. 2, pp. 280–292, 2018.

[50] T. Li, J. Corchado, and S. Sun, “On generalized covariance intersection
for distributed PHD filtering and a simple but better alternative,” in Proc.
FUSION 2017, Xi’an, China, Jul. 2017, pp. 808–815.

[51] G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano,
“Consensus-based linear and nonlinear filtering,” IEEE Trans. Autom.
control, vol. 60, no. 5, pp. 1410–1415, May 2015.

[52] T. Li, J. M. Corchado, S. Sun, and H. Fan, “Multi-EAP: Extended EAP
for multi-estimate extraction for SMC-PHD filter,” Chin. J. Aeronaut.,
vol. 30, no. 1, pp. 368 – 379, 2017.

[53] B. N. Vo and W. K. Ma, “The Gaussian mixture probability hypothesis
density filter,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4091–
4104, Nov. 2006.

[54] D. Schuhmacher, B. T. Vo, and B. N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Trans. Signal
Process., vol. 56, no. 8, pp. 3447–3457, Aug. 2008.




