14,853 research outputs found

    Bayesian analysis of multiple direct detection experiments

    Get PDF
    Bayesian methods offer a coherent and efficient framework for implementing uncertainties into induction problems. In this article, we review how this approach applies to the analysis of dark matter direct detection experiments. In particular we discuss the exclusion limit of XENON100 and the debated hints of detection under the hypothesis of a WIMP signal. Within parameter inference, marginalizing consistently over uncertainties to extract robust posterior probability distributions, we find that the claimed tension between XENON100 and the other experiments can be partially alleviated in isospin violating scenario, while elastic scattering model appears to be compatible with the frequentist statistical approach. We then move to model comparison, for which Bayesian methods are particularly well suited. Firstly, we investigate the annual modulation seen in CoGeNT data, finding that there is weak evidence for a modulation. Modulation models due to other physics compare unfavorably with the WIMP models, paying the price for their excessive complexity. Secondly, we confront several coherent scattering models to determine the current best physical scenario compatible with the experimental hints. We find that exothermic and inelastic dark matter are moderatly disfavored against the elastic scenario, while the isospin violating model has a similar evidence. Lastly the Bayes' factor gives inconclusive evidence for an incompatibility between the data sets of XENON100 and the hints of detection. The same question assessed with goodness of fit would indicate a 2 sigma discrepancy. This suggests that more data are therefore needed to settle this question.Comment: 29 pages, 8 figures; invited review for the special issue of the journal Physics of the Dark Universe; matches the published versio

    Analysis of Minimal LDPC Decoder System on a Chip Implementation

    Get PDF
    This paper presents a practical method of potential replacement of several different Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes with one, with the intention of saving as much memory as required to implement the LDPC encoder and decoder in a memory-constrained System on a Chip (SoC). The presented method requires only a very small modification of the existing encoder and decoder, making it suitable for utilization in a Software Defined Radio (SDR) platform. Besides the analysis of the effects of necessary variable-node value fixation during the Belief Propagation (BP) decoding algorithm, practical standard-defined code parameters are scrutinized in order to evaluate the feasibility of the proposed LDPC setup simplification. Finally, the error performance of the modified system structure is evaluated and compared with the original system structure by means of simulation

    Visibility-Based Demodulation of Rhessi Light Curves

    Full text link
    The Reuven Ramaty High Energy Spectroscopic Solar Imager (RHESSI) uses the rotational modulation principle to observe temporally, spatially, and spectrally resolved hard X ray and gamma ray images of solar flares. In order to track the flare evolution on time scales that are commensurate with modulation, the observed count rates must be demodulated at the expense of spatial information. The present paper describes improvements of an earlier demodulation algorithm, which decomposes the observed light curves into intrinsic source variability and instrumental modulation.Comment: 6 pages, 3 figure
    corecore