1,468 research outputs found

    Episodic Logit-Q Dynamics for Efficient Learning in Stochastic Teams

    Full text link
    We present new learning dynamics combining (independent) log-linear learning and value iteration for stochastic games within the auxiliary stage game framework. The dynamics presented provably attain the efficient equilibrium (also known as optimal equilibrium) in identical-interest stochastic games, beyond the recent concentration of progress on provable convergence to some (possibly inefficient) equilibrium. The dynamics are also independent in the sense that agents take actions consistent with their local viewpoint to a reasonable extent rather than seeking equilibrium. These aspects can be of practical interest in the control applications of intelligent and autonomous systems. The key challenges are the convergence to an inefficient equilibrium and the non-stationarity of the environment from a single agent's viewpoint due to the adaptation of others. The log-linear update plays an important role in addressing the former. We address the latter through the play-in-episodes scheme in which the agents update their Q-function estimates only at the end of the episodes

    Isometric sketching of any set via the Restricted Isometry Property

    Full text link
    In this paper we show that for the purposes of dimensionality reduction certain class of structured random matrices behave similarly to random Gaussian matrices. This class includes several matrices for which matrix-vector multiply can be computed in log-linear time, providing efficient dimensionality reduction of general sets. In particular, we show that using such matrices any set from high dimensions can be embedded into lower dimensions with near optimal distortion. We obtain our results by connecting dimensionality reduction of any set to dimensionality reduction of sparse vectors via a chaining argument.Comment: 17 page

    Optimal uncertainty quantification for legacy data observations of Lipschitz functions

    Get PDF
    We consider the problem of providing optimal uncertainty quantification (UQ) --- and hence rigorous certification --- for partially-observed functions. We present a UQ framework within which the observations may be small or large in number, and need not carry information about the probability distribution of the system in operation. The UQ objectives are posed as optimization problems, the solutions of which are optimal bounds on the quantities of interest; we consider two typical settings, namely parameter sensitivities (McDiarmid diameters) and output deviation (or failure) probabilities. The solutions of these optimization problems depend non-trivially (even non-monotonically and discontinuously) upon the specified legacy data. Furthermore, the extreme values are often determined by only a few members of the data set; in our principal physically-motivated example, the bounds are determined by just 2 out of 32 data points, and the remainder carry no information and could be neglected without changing the final answer. We propose an analogue of the simplex algorithm from linear programming that uses these observations to offer efficient and rigorous UQ for high-dimensional systems with high-cardinality legacy data. These findings suggest natural methods for selecting optimal (maximally informative) next experiments.Comment: 38 page

    Algorithmic patterns for H\mathcal{H}-matrices on many-core processors

    Get PDF
    In this work, we consider the reformulation of hierarchical (H\mathcal{H}) matrix algorithms for many-core processors with a model implementation on graphics processing units (GPUs). H\mathcal{H} matrices approximate specific dense matrices, e.g., from discretized integral equations or kernel ridge regression, leading to log-linear time complexity in dense matrix-vector products. The parallelization of H\mathcal{H} matrix operations on many-core processors is difficult due to the complex nature of the underlying algorithms. While previous algorithmic advances for many-core hardware focused on accelerating existing H\mathcal{H} matrix CPU implementations by many-core processors, we here aim at totally relying on that processor type. As main contribution, we introduce the necessary parallel algorithmic patterns allowing to map the full H\mathcal{H} matrix construction and the fast matrix-vector product to many-core hardware. Here, crucial ingredients are space filling curves, parallel tree traversal and batching of linear algebra operations. The resulting model GPU implementation hmglib is the, to the best of the authors knowledge, first entirely GPU-based Open Source H\mathcal{H} matrix library of this kind. We conclude this work by an in-depth performance analysis and a comparative performance study against a standard H\mathcal{H} matrix library, highlighting profound speedups of our many-core parallel approach
    • …
    corecore