582 research outputs found

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    A new meta-module for efficient reconfiguration of hinged-units modular robots

    Get PDF
    We present a robust and compact meta-module for edge-hinged modular robot units such as M-TRAN, SuperBot, SMORES, UBot, PolyBot and CKBot, as well as for central-point-hinged ones such as Molecubes and Roombots. Thanks to the rotational degrees of freedom of these units, the novel meta-module is able to expand and contract, as to double/halve its length in each dimension. Moreover, for a large class of edge-hinged robots the proposed meta-module also performs the scrunch/relax and transfer operations required by any tunneling-based reconfiguration strategy, such as those designed for Crystalline and Telecube robots. These results make it possible to apply efficient geometric reconfiguration algorithms to this type of robots. We prove the size of this new meta-module to be optimal. Its robustness and performance substantially improve over previous results.Peer ReviewedPostprint (author's final draft

    A Vision-based Scheme for Kinematic Model Construction of Re-configurable Modular Robots

    Full text link
    Re-configurable modular robotic (RMR) systems are advantageous for their reconfigurability and versatility. A new modular robot can be built for a specific task by using modules as building blocks. However, constructing a kinematic model for a newly conceived robot requires significant work. Due to the finite size of module-types, models of all module-types can be built individually and stored in a database beforehand. With this priori knowledge, the model construction process can be automated by detecting the modules and their corresponding interconnections. Previous literature proposed theoretical frameworks for constructing kinematic models of modular robots, assuming that such information was known a priori. While well-devised mechanisms and built-in sensors can be employed to detect these parameters automatically, they significantly complicate the module design and thus are expensive. In this paper, we propose a vision-based method to identify kinematic chains and automatically construct robot models for modular robots. Each module is affixed with augmented reality (AR) tags that are encoded with unique IDs. An image of a modular robot is taken and the detected modules are recognized by querying a database that maintains all module information. The poses of detected modules are used to compute: (i) the connection between modules and (ii) joint angles of joint-modules. Finally, the robot serial-link chain is identified and the kinematic model constructed and visualized. Our experimental results validate the effectiveness of our approach. While implementation with only our RMR is shown, our method can be applied to other RMRs where self-identification is not possible

    Evolutionary Modular Robotics: Survey and Analysis

    Get PDF
    This paper surveys various applications of artificial evolution in the field of modular robots. Evolutionary robotics aims to design autonomous adaptive robots automatically that can evolve to accomplish a specific task while adapting to environmental changes. A number of studies have demonstrated the feasibility of evolutionary algorithms for generating robotic control and morphology. However, a huge challenge faced was how to manufacture these robots. Therefore, modular robots were employed to simplify robotic evolution and their implementation in real hardware. Consequently, more research work has emerged on using evolutionary computation to design modular robots rather than using traditional hand design approaches in order to avoid cognition bias. These techniques have the potential of developing adaptive robots that can achieve tasks not fully understood by human designers. Furthermore, evolutionary algorithms were studied to generate global modular robotic behaviors including; self-assembly, self-reconfiguration, self-repair, and self-reproduction. These characteristics allow modular robots to explore unstructured and hazardous environments. In order to accomplish the aforementioned evolutionary modular robotic promises, this paper reviews current research on evolutionary robotics and modular robots. The motivation behind this work is to identify the most promising methods that can lead to developing autonomous adaptive robotic systems that require the minimum task related knowledge on the designer side.https://doi.org/10.1007/s10846-018-0902-

    Autonomous Task-Based Evolutionary Design of Modular Robots

    Get PDF
    In an attempt to solve the problem of finding a set of multiple unique modular robotic designs that can be constructed using a given repertoire of modules to perform a specific task, a novel synthesis framework is introduced based on design optimization concepts and evolutionary algorithms to search for the optimal design. Designing modular robotic systems faces two main challenges: the lack of basic rules of thumb and design bias introduced by human designers. The space of possible designs cannot be easily grasped by human designers especially for new tasks or tasks that are not fully understood by designers. Therefore, evolutionary computation is employed to design modular robots autonomously. Evolutionary algorithms can efficiently handle problems with discrete search spaces and solutions of variable sizes as these algorithms offer feasible robustness to local minima in the search space; and they can be parallelized easily to reducing system runtime. Moreover, they do not have to make assumptions about the solution form. This dissertation proposes a novel autonomous system for task-based modular robotic design based on evolutionary algorithms to search for the optimal design. The introduced system offers a flexible synthesis algorithm that can accommodate to different task-based design needs and can be applied to different modular shapes to produce homogenous modular robots. The proposed system uses a new representation for modular robotic assembly configuration based on graph theory and Assembly Incidence Matrix (AIM), in order to enable efficient and extendible task-based design of modular robots that can take input modules of different geometries and Degrees Of Freedom (DOFs). Robotic simulation is a powerful tool for saving time and money when designing robots as it provides an accurate method of assessing robotic adequacy to accomplish a specific task. Furthermore, it is difficult to predict robotic performance without simulation. Thus, simulation is used in this research to evaluate the robotic designs by measuring the fitness of the evolved robots, while incorporating the environmental features and robotic hardware constraints. Results are illustrated for a number of benchmark problems. The results presented a significant advance in robotic design automation state of the art

    Heterogeneous Self-Reconfiguring Robotics: Ph.D. Thesis Proposal

    Get PDF
    Self-reconfiguring robots are modular systems that can change shape, or reconfigure, to match structure to task. They comprise many small, discrete, often identical modules that connect together and that are minimally actuated. Global shape transformation is achieved by composing local motions. Systems with a single module type, known as homogeneous systems, gain fault tolerance, robustness and low production cost from module interchangeability. However, we are interested in heterogeneous systems, which include multiple types of modules such as those with sensors, batteries or wheels. We believe that heterogeneous systems offer the same benefits as homogeneous systems with the added ability to match not only structure to task, but also capability to task. Although significant results have been achieved in understanding homogeneous systems, research in heterogeneous systems is challenging as key algorithmic issues remain unexplored. We propose in this thesis to investigate questions in four main areas: 1) how to classify heterogeneous systems, 2) how to develop efficient heterogeneous reconfiguration algorithms with desired characteristics, 3) how to characterize the complexity of key algorithmic problems, and 4) how to apply these heterogeneous algorithms to perform useful new tasks in simulation and in the physical world. Our goal is to develop an algorithmic basis for heterogeneous systems. This has theoretical significance in that it addresses a major open problem in the field, and practical significance in providing self-reconfiguring robots with increased capabilities

    Decentralized Approach to Evolve the Structure of Metamorphic Robots

    Get PDF
    International audienceMetamorphic robots are robots that can change their shape by reorganizing the connectivity of their modules to adapt to new environments, perform new tasks, or recover from damages. In this paper we present a decentralized method for structural evolving of a class of lattice-based simulated metamorphic robots in a static environment. These robots are considered as a set of crystalline (compressible) modules that are able to connect or disconnect one from each another or even exchange information and energy with the neighbor modules in order to form various structures/patterns dynamically. Our approach is splitted in two layers: in the first layer a genetic algorithm is used to generate a number of well suited target configurations based on current information perceived from environment, while in the second layer a PacMan-like algorithm is used to make a plan for modules movement to transform the robot from its current pattern to the target pattern emerged in first layer

    Distributed reinforcement learning for self-reconfiguring modular robots

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 101-106).In this thesis, we study distributed reinforcement learning in the context of automating the design of decentralized control for groups of cooperating, coupled robots. Specifically, we develop a framework and algorithms for automatically generating distributed controllers for self-reconfiguring modular robots using reinforcement learning. The promise of self-reconfiguring modular robots is that of robustness, adaptability and versatility. Yet most state-of-the-art distributed controllers are laboriously handcrafted and task-specific, due to the inherent complexities of distributed, local-only control. In this thesis, we propose and develop a framework for using reinforcement learning for automatic generation of such controllers. The approach is profitable because reinforcement learning methods search for good behaviors during the lifetime of the learning agent, and are therefore applicable to online adaptation as well as automatic controller design. However, we must overcome the challenges due to the fundamental partial observability inherent in a distributed system such as a self reconfiguring modular robot. We use a family of policy search methods that we adapt to our distributed problem. The outcome of a local search is always influenced by the search space dimensionality, its starting point, and the amount and quality of available exploration through experience.(cont) We undertake a systematic study of the effects that certain robot and task parameters, such as the number of modules, presence of exploration constraints, availability of nearest-neighbor communications, and partial behavioral knowledge from previous experience, have on the speed and reliability of learning through policy search in self-reconfiguring modular robots. In the process, we develop novel algorithmic variations and compact search space representations for learning in our domain, which we test experimentally on a number of tasks. This thesis is an empirical study of reinforcement learning in a simulated lattice based self-reconfiguring modular robot domain. However, our results contribute to the broader understanding of automatic generation of group control and design of distributed reinforcement learning algorithms.by Paulina Varshavskaya.Ph.D
    • …
    corecore