404 research outputs found

    Evolution of central pattern generators for the control of a five-link bipedal walking mechanism

    Get PDF
    Central pattern generators (CPGs), with a basis is neurophysiological studies, are a type of neural network for the generation of rhythmic motion. While CPGs are being increasingly used in robot control, most applications are hand-tuned for a specific task and it is acknowledged in the field that generic methods and design principles for creating individual networks for a given task are lacking. This study presents an approach where the connectivity and oscillatory parameters of a CPG network are determined by an evolutionary algorithm with fitness evaluations in a realistic simulation with accurate physics. We apply this technique to a five-link planar walking mechanism to demonstrate its feasibility and performance. In addition, to see whether results from simulation can be acceptably transferred to real robot hardware, the best evolved CPG network is also tested on a real mechanism. Our results also confirm that the biologically inspired CPG model is well suited for legged locomotion, since a diverse manifestation of networks have been observed to succeed in fitness simulations during evolution.Comment: 11 pages, 9 figures; substantial revision of content, organization, and quantitative result

    Generation and control of locomotion patterns for biped robots by using central pattern generators

    Get PDF
    This paper presents an efficient closed-loop locomotion control system for biped robots that operates in the joint space. The robot’s joints are directly driven through control signals generated by a central pattern generator (CPG) network. A genetic algorithm is applied in order to find out an optimal combination of internal parameters of the CPG given a desired walking speed in straight line. Feedback signals generated by the robot’s inertial and force sensors are directly fed into the CPG in order to automatically adjust the locomotion pattern over uneven terrain and to deal with external perturbations in real time. Omnidirectional motion is achieved by controlling the pelvis motion. The performance of the proposed control system has been assessed through simulation experiments on a NAO humanoid robot

    A modular approach for trajectory generation in biped robots

    Get PDF
    Robot locomotion has been a major research issue in the last decades. In particular, humanoid robotics has had a major breakthrough. The motivation for this study is that bipedal locomotion is superior to wheeled approaches on real terrain and situations where robots accompany or replace humans. Some examples are, on the development of human assisting device, such as prosthetics, orthotics, and devices for rehabilitation, rescue of wounded troops, help at the office, help as maidens, accompany and assist elderly people, amongst others. Generating trajectories online for these robots is a hard process, that includes different types of movements, i.e., distinct motor primitives. In this paper, we consider two motor primitives: rhythmic and discrete.We study the effect on a bipeds robots’ gaits of inserting the discrete part as an offset of the rhythmic primitive, in synaptic and diffusive couplings. Numerical results show that amplitude and frequency of the periodic solution, corresponding to the gait run are almost constant in all cases studied here.(undefined

    Neuro-mechanical entrainment in a bipedal robotic walking platform

    No full text
    In this study, we investigated the use of van der Pol oscillators in a 4-dof embodied bipedal robotic platform for the purposes of planar walking. The oscillator controlled the hip and knee joints of the robot and was capable of generating waveforms with the correct frequency and phase so as to entrain with the mechanical system. Lowering its oscillation frequency resulted in an increase to the walking pace, indicating exploitation of the global natural dynamics. This is verified by its operation in absence of entrainment, where faster limb motion results in a slower overall walking pace

    Multisensor Input for CPG-Based Sensory—Motor Coordination

    Get PDF
    International audienceThis paper describes a method for providing in real time a reliable synchronization signal for cyclical motions such as steady-state walking. The approach consists in estimating online a phase variable on the basis of several implicit central pattern generator associated with a set of sensors. These sensors can be of any kind, provided their output strongly reflects the timedmotion of a link. They can be, for example, spatial position or orientation sensors, or foot sole pressure sensors. The principle of the method is to use their outputs as inputs to nonlinear observers of modified Van der Pol oscillators that provide us with several independent estimations of the overall phase of the system. These estimations are then combined within a dynamical filter constituted of a Hopf oscillator. The resulting phase is a reliable indexing of the cyclic behavior of the system, which can finally be used as input to low-level controllers of a robot. Some results illustrate the efficiency of the approach, which can be used to control robots

    Neuro-mechanical entrainment in a bipedal robotic walking platform

    No full text
    In this study, we investigated the use of van der Pol oscillators in a 4-dof embodied bipedal robotic platform for the purposes of planar walking. The oscillator controlled the hip and knee joints of the robot and was capable of generating waveforms with the correct frequency and phase so as to entrain with the mechanical system. Lowering its oscillation frequency resulted in an increase to the walking pace, indicating exploitation of the global natural dynamics. This is verified by its operation in absence of entrainment, where faster limb motion results in a slower overall walking pace

    Minimalistic control of biped walking in rough terrain

    Get PDF
    Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the "phase locking” mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrai

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage
    corecore