3 research outputs found

    Location-Dependent Query Processing Under Soft Real-Time Constraints

    Get PDF

    Optimizing the Performance and Robustness of Type-2 Fuzzy Group Nearest-Neighbor Queries

    Get PDF
    In Group Nearest-Neighbor (GNN) queries, the goal is to find one or more points of interest with minimum sum of distance to the current location of mobile users. The classic forms of GNN use Euclidean distance measure which is not sufficient to capture other essential distance perceptions of human and the inherent uncertainty of it. To overcome this problem, an improved distance model can be used which is based on a richer, closer to real-world type-2 fuzzy logic distance model. However, large search spaces as well as the need for higher-order uncertainty management will increase the response times of such GNN queries. In this paper two fuzzy clustering methods combined with spatial tessellation are exploited to reduce the search space. Extensive evaluation of the proposed method shows improved response times compared to naïve method while maintaining a high quality of approximation. The proposed uncertainty management method also provides robustness to movement of mobile users, eliminating the need for full re-computation of candidate clusters when the locations of group members are changed

    Location-Dependent Query Processing Under Soft Real-Time Constraints

    No full text
    In recent years, mobile devices and applications achieved an increasing development. In database field, this development required methods to consider new query types like location-dependent queries (i.e. the query results depend on the query issuer location). Although several researches addressed problems related to location-dependent query processing, a few works considered timing requirements that may be associated with queries (i.e., the query results must be delivered to mobile clients on time). The main objective of this paper is to propose a solution for location-dependent query processing under soft real-time constraints. Hence, we propose methods to take into account client location-dependency and to maximize the percentage of queries respecting their deadlines. We validate our proposal by implementing a prototype based on Oracle DBMS. Performance evaluation results show that the proposed solution optimizes the percentage of queries meeting their deadlines and the communication cost
    corecore