6 research outputs found

    Context-aware explainable recommendations over knowledge graphs

    Full text link
    Knowledge graphs contain rich semantic relationships related to items and incorporating such semantic relationships into recommender systems helps to explore the latent connections of items, thus improving the accuracy of prediction and enhancing the explainability of recommendations. However, such explainability is not adapted to users' contexts, which can significantly influence their preferences. In this work, we propose CA-KGCN (Context-Aware Knowledge Graph Convolutional Network), an end-to-end framework that can model users' preferences adapted to their contexts and can incorporate rich semantic relationships in the knowledge graph related to items. This framework captures users' attention to different factors: contexts and features of items. More specifically, the framework can model users' preferences adapted to their contexts and provide explanations adapted to the given context. Experiments on three real-world datasets show the effectiveness of our framework: modeling users' preferences adapted to their contexts and explaining the recommendations generated

    Bias in knowledge graphs - An empirical study with movie recommendation and different language editions of DBpedia

    Get PDF
    Public knowledge graphs such as DBpedia and Wikidata have been recognized as interesting sources of background knowledge to build content-based recommender systems. They can be used to add information about the items to be recommended and links between those. While quite a few approaches for exploiting knowledge graphs have been proposed, most of them aim at optimizing the recommendation strategy while using a fixed knowledge graph. In this paper, we take a different approach, i.e., we fix the recommendation strategy and observe changes when using different underlying knowledge graphs. Particularly, we use different language editions of DBpedia. We show that the usage of different knowledge graphs does not only lead to differently biased recommender systems, but also to recommender systems that differ in performance for particular fields of recommendations

    Self-supervised representation learning for geographical data - a systematic literature review

    Get PDF
    Self-supervised representation learning (SSRL) concerns the problem of learning a useful data representation without the requirement for labelled or annotated data. This representation can, in turn, be used to support solutions to downstream machine learning problems. SSRL has been demonstrated to be a useful tool in the field of geographical information science (GIS). In this article, we systematically review the existing research literature in this space to answer the following five research questions. What types of representations were learnt? What SSRL models were used? What downstream problems were the representations used to solve? What machine learning models were used to solve these problems? Finally, does using a learnt representation improve the overall performance

    Location embeddings for next trip recommendation

    No full text
    corecore