4 research outputs found

    Secure Mutual Self-Authenticable Mechanism for Wearable Devices

    Get PDF
    YesDue to the limited communication range of wearable devices, there is the need for wearable devices to communicate amongst themselves, supporting devices and the internet or to the internet. Most wearable devices are not internet enabled and most often need an internet enabled broker device or intermediate device in order to reach the internet. For a secure end to end communication between these devices security measures like authentication must be put in place in other to prevent unauthorised access to information given the sensitivity of the information collected and transmitted. Therefore, there are other existing authentication solutions for wearable devices but these solutions actively involve from time to time the user of the device which is prone to a lot of challenges. As a solution to these challenges, this paper proposes a secure point-to-point Self-authentication mechanism that involves device to device interaction. This work exploits existing standards and framework like NFC, PPP, EAP etc. in other to achieve a device compatible secure authentication protocol amongst wearable device and supporting devices.

    The Measurable Environment as Nonintrusive Authentication Factor on the Example of WiFi Beacon Frames

    Get PDF
    We explore a method to fingerprint a location in terms of its measurable environment to create an authentication factor that is nonintrusive in the sense that a user is not required to engage in the authentication process actively. Exemplary, we describe the measurable environment by beacon frames from the WiFi access points in the user’s proximity. To use the measurable environment for authentication, measurements must be sufficiently discriminating between locations and similar at the same location. An authentication factor built from the measurable environment allows us to describe a user’s location in terms of measurable signals. Describing a location in terms of its measurable signals implies that we do not require an actual geographical mapping of the user’s location; comparing the measured signals is sufficient to create a location-based authentication factor. Only recognizing an earlier observed environment distinguishes our approach from other location-based authentication factors. We elaborate on using signals in the user’s environment in the background without user involvement to create a privacy-preserving but nonintrusive authentication factor suitable for integration into existing multi-factor authentication schemes.</p

    Unobtrusive Location-Based Access Control Utilizing Existing IEEE 802.11 Infrastructure

    Get PDF
    Mobile devices can sense several types of signals over the air using different radio frequency technologies (e.g., Wi-Fi, Bluetooth, cellular signals, etc.). Furthermore, mobile devices receive broadcast messages from transmitting entities (e.g., network access points, cellular phone towers, etc.) and can measure the received signal strength from these entities. Broadcast messages carry the information needed in case a mobile device chooses to establish communication. We believe that these signals can be utilized in the context of access control, specifically because they could provide an indication of the location of a user\u27s device. Such a “location proof” could then be used to provide access to location-based services. In this research, we propose a location-based access control (LBAC) system that utilizes tokens broadcasted by IEEE 802.11 (Wi-Fi) access points as a location proof for clients requesting access to a resource. This work differs from existing research in that it allows the verification of a client’s location continuously and unobtrusively, utilizing existing IEEE 802.11 infrastructure (which makes it easily deployable), and resulting in a secure and convenient LBAC system. This work illustrates an important application of location-based services (LBS): security. LBAC systems manage access to resources by utilizing the location of clients. The proposed LBAC system attempts to take advantage of the current IEEE 802.11 infrastructure, making it directly applicable to an existing ubiquitous system infrastructure
    corecore