4,276 research outputs found

    Simulated Annealing for Location Area Planning in Cellular networks

    Full text link
    LA planning in cellular network is useful for minimizing location management cost in GSM network. In fact, size of LA can be optimized to create a balance between the LA update rate and expected paging rate within LA. To get optimal result for LA planning in cellular network simulated annealing algorithm is used. Simulated annealing give optimal results in acceptable run-time.Comment: 7 Pages, JGraph-Hoc Journa

    Node placement in Wireless Mesh Networks: a comparison study of WMN-SA and WMN-PSO simulation systems

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.With the fast development of wireless technologies, Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless Internet connectivity. In our previous work, we implemented a simulation system based on Simulated Annealing (SA) for solving node placement problem in wireless mesh networks, called WMN-SA. Also, we implemented a Particle Swarm Optimization (PSO) based simulation system, called WMN-PSO. In this paper, we compare two systems considering calculation time. From the simulation results, when the area size is 32 Ă— 32 and 64 Ă— 64, WMN-SA is better than WMN-PSO. When the area size is 128 Ă— 128, WMN-SA performs better than WMN-PSO. However, WMN-SA needs more calculation time than WMN-PSO.Peer ReviewedPostprint (author's final draft

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined

    Design of personalized location areas for future Pcs networks

    Full text link
    In Global Systems for Mobile Communications (GSM), always-update location strategy is used to keep track of mobile terminals within the network. However future Personal Communication Networks (PCS) will require to serve a wide range of services (digital voice, video, data, and email) and also will have to support a large population of users. Under such demands, determining the exact location of a user by traditional strategies would be difficult and would result in increasing the signaling load imposed by location-update and paging procedures. The problem is not only in increasing cost, but also in non-efficient utilization of a precious resource, i.e., radio bandwidth; In this thesis, personalized Location Areas (PLAs) are formed considering the mobility patterns of individual users in the system such that the signaling due to location update and paging is minimized. We prove that the problem in this formulation is of NP complexity. Therefore we study efficient optimization techniques able to avoid combinatorial search. Three known classes of optimization techniques are studied. They are Simulated Annealing, Tabu Search and Genetic Search. Three algorithms are designed for solving the problem. Modeling does not assume any specific cell structure or network topology that makes the proposal widely applicable. The behavior of mobile terminals in the network is modeled as Random Walk with an absorbing state and the Markov chain is used for cost analysis; Numeric simulation carried out for 25 and 100 hexagonal cell networks have shown that Simulated Annealing based algorithm outperforms other two by indicators of the runtime complexity and signaling cost of location management. The ID\u27s of cells populating the calculated area are provided to the mobile terminal and saved in its local memory every time the mobile subscriber moves out its current location area. Otherwise, no location update is performed, but only paging. Thus, at the expense of small local memory, the location management is carried more efficiently

    A framework for the joint placement of edge service infrastructure and User Plane Functions for 5G

    Get PDF
    Achieving less than 1 ms end-to-end communication latency, required for certain 5G services and use cases, is imposing severe technical challenges for the deployment of next-generation networks. To achieve such an ambitious goal, the service infrastructure and User Plane Function (UPF) placement at the network edge, is mandatory. However, this solution implies a substantial increase in deployment and operational costs. To cost-effectively solve this joint placement problem, this paper introduces a framework to jointly address the placement of edge nodes (ENs) and UPFs. Our framework proposal relies on Integer Linear Programming (ILP) and heuristic solutions. The main objective is to determine the ENs and UPFs’ optimal number and locations to minimize overall costs while satisfying the service requirements. To this aim, several parameters and factors are considered, such as capacity, latency, costs and site restrictions. The proposed solutions are evaluated based on different metrics and the obtained results showcase over 20% cost savings for the service infrastructure deployment. Moreover, the gap between the UPF placement heuristic and the optimal solution is equal to only one UPF in the worst cases, and a computation time reduction of over 35% is achieved in all the use cases studied.Postprint (author's final draft
    • …
    corecore