9 research outputs found

    Locating-total dominating sets in twin-free graphs: a conjecture

    Full text link
    A total dominating set of a graph GG is a set DD of vertices of GG such that every vertex of GG has a neighbor in DD. A locating-total dominating set of GG is a total dominating set DD of GG with the additional property that every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)DN(v)DN(u) \cap D \ne N(v) \cap D where N(u)N(u) denotes the open neighborhood of uu. A graph is twin-free if every two distinct vertices have distinct open and closed neighborhoods. The location-total domination number of GG, denoted LT(G)LT(G), is the minimum cardinality of a locating-total dominating set in GG. It is well-known that every connected graph of order n3n \geq 3 has a total dominating set of size at most 23n\frac{2}{3}n. We conjecture that if GG is a twin-free graph of order nn with no isolated vertex, then LT(G)23nLT(G) \leq \frac{2}{3}n. We prove the conjecture for graphs without 44-cycles as a subgraph. We also prove that if GG is a twin-free graph of order nn, then LT(G)34nLT(G) \le \frac{3}{4}n.Comment: 18 pages, 1 figur

    Editorial Board

    Get PDF

    Editorial Board

    Get PDF

    Location-domination in line graphs

    Full text link
    A set DD of vertices of a graph GG is locating if every two distinct vertices outside DD have distinct neighbors in DD; that is, for distinct vertices uu and vv outside DD, N(u)DN(v)DN(u) \cap D \neq N(v) \cap D, where N(u)N(u) denotes the open neighborhood of uu. If DD is also a dominating set (total dominating set), it is called a locating-dominating set (respectively, locating-total dominating set) of GG. A graph GG is twin-free if every two distinct vertices of GG have distinct open and closed neighborhoods. It is conjectured [D. Garijo, A. Gonzalez and A. Marquez, The difference between the metric dimension and the determining number of a graph. Applied Mathematics and Computation 249 (2014), 487--501] and [F. Foucaud and M. A. Henning. Locating-total dominating sets in twin-free graphs: a conjecture. The Electronic Journal of Combinatorics 23 (2016), P3.9] respectively, that any twin-free graph GG without isolated vertices has a locating-dominating set of size at most one-half its order and a locating-total dominating set of size at most two-thirds its order. In this paper, we prove these two conjectures for the class of line graphs. Both bounds are tight for this class, in the sense that there are infinitely many connected line graphs for which equality holds in the bounds.Comment: 23 pages, 2 figure

    On Stronger Types of Locating-dominating Codes

    Full text link
    Locating-dominating codes in a graph find their application in sensor networks and have been studied extensively over the years. A locating-dominating code can locate one object in a sensor network, but if there is more than one object, it may lead to false conclusions. In this paper, we consider stronger types of locating-dominating codes which can locate one object and detect if there are multiple objects. We study the properties of these codes and provide bounds on the smallest possible size of these codes, for example, with the aid of the Dilworth number and Sperner families. Moreover, these codes are studied in trees and Cartesian products of graphs. We also give the complete realization theorems for the coexistence of the smallest possible size of these codes and the optimal locating-dominating codes in a graph

    On location, domination and information retrieval

    Get PDF
    The thesis is divided into two main branches: identifying and locatingdominating codes, and information retrieval. The former topics are motivated by the aim to locate objects in sensor networks (or other similar applications) and the latter one by the need to retrieve information in memories such as DNA data storage systems. Albeit the underlying applications, the study on these topics mainly belongs to discrete mathematics; more specically, to the elds of coding and graph theory. The sensor networks are usually represented by graphs where vertices represent the monitored locations and edges the connections between the locations. Moreover, the locations of the sensors are determined by a code. Furthermore, the desired properties of the sensor network are deeply linked with the properties of the underlying code. The number of errors in reading the data is abundant in the DNA data storage systems. In particular, there can occur more errors than a reasonable error-correcting code can handle. However, this problem is somewhat oset by the possibility to obtain multiple approximations of the same information from the data storage. Hence, the information retrieval process can be modelled by the Levenshtein's channel model, where a message is sent through multiple noisy channels and multiple outputs are received. In the rst two papers of the thesis, we introduce and study the new concepts of self- and solid-locating-dominating codes as a natural analogy to self-identifying codes with respect to locating-dominating codes. The rst paper introduces these new codes and considers them in some graphs such as the Hamming graphs. Then, in the second paper, we broaden our view on the topic by considering graph theoretical questions. We give optimal codes in multiple dierent graph classes and some more general results using concepts such as the Dilworth number and graph complements. The third paper focuses on the q-ary Hamming spaces. In particular, we disprove a conjecture proposed by Goddard and Wash related to identifying codes. In the fourth paper, we return to self- and solid-locating-dominating codes and give optimal codes in some graph classes and consider their densities in innite graphs. In the fth paper, we consider information retrieval in memories; in particular, the Levenshtein's channel model. In the channel model, we transmit some codeword belonging to the binary Hamming space through multiple identical channels. With the help of multiple dierent outputs, we give a list of codewords which may have been sent. In the paper, we study the number of channels required to have a rather small (constant) list size when the properties of the channels, the code and the dimension of the Hamming space are xed. In particular, we give an exact relation between the number of channels and the asymptotic value of the maximum list size.Väitöskirja käsittelee kahta aihetta: identioivia ja paikantavia peittokoodeja sekä tiedon noutamista muistista. Ensimmäisen aiheen motivaationa on objektien paikantaminen sensoriverkoista (sekä muut samankaltaiset sovellukset) ja jälkimmäisen tiedonnouto DNA-muisteista. Näiden aiheiden tutkimus kuuluu diskreettiin matematiikkaan, täsmällisemmin koodaus- ja graa-teoriaan. Sensoriverkkoja kuvataan yleensä graafeilla, joissa solmut esittävät tarkkailtuja kohteita ja viivat yhteyksiä näiden kohteiden välillä. Edelleen sensorien paikat määräytyvät annetun koodin perusteella. Tästä johtuen sensoriverkon halutut ominaisuudet pohjautuvat vahvasti alla olevaan koodiin. Luettaessa tietoa DNA-muisteista tapahtuvien virheiden määrä saattaa olla erittäin suuri; erityisesti suurempi kuin kiinnitetyn virheitä korjaavan koodin korjauskyky. Toisaalta tilanne ei ole aivan näin ongelmallinen, sillä DNA-muisteista voidaan saada useita eri arvioita muistiin tallennetusta tiedosta. Näistä syistä johtuen tietojen noutamista DNA-muisteista voidaan mallintaa käyttäen Levenshteinin kanavamallia. Kanavamallissa yksi viesti lähetetään useiden häiriöisten kanavien kautta ja näin vastaanotetaan useita viestejä (yksi jokaisesta kanavasta). Väitöskirjan kahdessa ensimmäisessä julkaisussa esitellään ja tutkitaan uusia paikantavien peittokoodien luokkia, jotka pohjautuvat aiemmin tutkittuihin itse-identioiviin koodeihin. Ensimmäisessä julkaisussa on esitelty nämä koodiluokat sekä tutkittu niitä joissain graafeissa kuten Hammingin graafeissa. Tämän jälkeen toisessa julkaisussa käsitellään yleisiä graa-teoreettisia kysymyksiä. Julkaisussa esitetään optimaaliset koodit useille graaperheille sekä joitain yleisempiä tuloksia käyttäen mm. Dilworthin lukua sekä graakomplementteja. Kolmas julkaisu keskittyy q-arisiin Hammingin avaruuksiin. Erityisesti julkaisussa todistetaan vääräksi Goddardin ja Washin aiemmin esittämä identioivia koodeja koskeva otaksuma. Neljäs artikkeli käsittelee jo kahdessa ensimmäisessä artikkelissa esiteltyjä paikantavien peittokoodien luokkia. Artikkeli esittää optimaalisia koodeja useille graaperheille sekä käsittelee äärettömiä graafeja. Viides artikkeli käsittelee tiedonnoutoa ja erityisesti Levenshteinin kanavamallia. Kanavamallissa binääriseen Hammingin avaruuteen kuuluva koodisana lähetetään useiden identtisten kanavien läpi. Näistä kanavista vastaanotetaan useita eri arvioita lähetetystä koodisanasta ja rakennetaan lista mahdollisesti lähetetyistä sanoista. Artikkelissa tutkitaan kuinka monta kanavaa tarvitaan, jotta tämän listan koko on pieni (vakio), kun kanavien ominaisuudet, koodi ja Hammingin avaruuden dimensio on kiinnitetty. Erityisesti löydetään täsmällinen suhde kanavien lukumäärän ja asymptoottisesti maksimaalisen listan koon välille
    corecore