2,143 research outputs found

    Locating Ax, where A is a subspace of B(H)

    Full text link
    Let A be a linear space of operators on a Hilbert space H, x a vector in H, and Ax the subspace of H comprising all vectors of the form Tx with T in A. We discuss, within a Bishop-style constructive framework, conditions under which the projection [Ax] of H on the closure of Ax exists. We derive a general result that leads directly to both the open mapping theorem and our main theorem on the existence of [Ax]

    Locating Ax, where A is a subspace of B(H)

    Full text link

    Grid-free compressive beamforming

    Get PDF
    The direction-of-arrival (DOA) estimation problem involves the localization of a few sources from a limited number of observations on an array of sensors, thus it can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve high-resolution imaging. On a discrete angular grid, the CS reconstruction degrades due to basis mismatch when the DOAs do not coincide with the angular directions on the grid. To overcome this limitation, a continuous formulation of the DOA problem is employed and an optimization procedure is introduced, which promotes sparsity on a continuous optimization variable. The DOA estimation problem with infinitely many unknowns, i.e., source locations and amplitudes, is solved over a few optimization variables with semidefinite programming. The grid-free CS reconstruction provides high-resolution imaging even with non-uniform arrays, single-snapshot data and under noisy conditions as demonstrated on experimental towed array data.Comment: 14 pages, 8 figures, journal pape

    Weak and cyclic amenability for Fourier algebras of connected Lie groups

    Full text link
    Using techniques of non-abelian harmonic analysis, we construct an explicit, non-zero cyclic derivation on the Fourier algebra of the real ax+bax+b group. In particular this provides the first proof that this algebra is not weakly amenable. Using the structure theory of Lie groups, we deduce that the Fourier algebras of connected, semisimple Lie groups also support non-zero, cyclic derivations and are likewise not weakly amenable. Our results complement earlier work of Johnson (JLMS, 1994), Plymen (unpublished note) and Forrest--Samei--Spronk (IUMJ 2009). As an additional illustration of our techniques, we construct an explicit, non-zero cyclic derivation on the Fourier algebra of the reduced Heisenberg group, providing the first example of a connected nilpotent group whose Fourier algebra is not weakly amenable.Comment: v4: AMS-LaTeX, 26 pages. Final version, to appear in JFA. Includes an authors' correction added at proof stag
    • …
    corecore