1,665 research outputs found

    Studies on dimension reduction and feature spaces :

    Get PDF
    Today's world produces and stores huge amounts of data, which calls for methods that can tackle both growing sizes and growing dimensionalities of data sets. Dimension reduction aims at answering the challenges posed by the latter. Many dimension reduction methods consist of a metric transformation part followed by optimization of a cost function. Several classes of cost functions have been developed and studied, while metrics have received less attention. We promote the view that metrics should be lifted to a more independent role in dimension reduction research. The subject of this work is the interaction of metrics with dimension reduction. The work is built on a series of studies on current topics in dimension reduction and neural network research. Neural networks are used both as a tool and as a target for dimension reduction. When the results of modeling or clustering are represented as a metric, they can be studied using dimension reduction, or they can be used to introduce new properties into a dimension reduction method. We give two examples of such use: visualizing results of hierarchical clustering, and creating supervised variants of existing dimension reduction methods by using a metric that is built on the feature space of a neural network. Combining clustering with dimension reduction results in a novel way for creating space-efficient visualizations, that tell both about hierarchical structure and about distances of clusters. We study feature spaces used in a recently developed neural network architecture called extreme learning machine. We give a novel interpretation for such neural networks, and recognize the need to parameterize extreme learning machines with the variance of network weights. This has practical implications for use of extreme learning machines, since the current practice emphasizes the role of hidden units and ignores the variance. A current trend in the research of deep neural networks is to use cost functions from dimension reduction methods to train the network for supervised dimension reduction. We show that equally good results can be obtained by training a bottlenecked neural network for classification or regression, which is faster than using a dimension reduction cost. We demonstrate that, contrary to the current belief, using sparse distance matrices for creating fast dimension reduction methods is feasible, if a proper balance between short-distance and long-distance entries in the sparse matrix is maintained. This observation opens up a promising research direction, with possibility to use modern dimension reduction methods on much larger data sets than which are manageable today

    Rigid Transformations for Stabilized Lower Dimensional Space to Support Subsurface Uncertainty Quantification and Interpretation

    Full text link
    Subsurface datasets inherently possess big data characteristics such as vast volume, diverse features, and high sampling speeds, further compounded by the curse of dimensionality from various physical, engineering, and geological inputs. Among the existing dimensionality reduction (DR) methods, nonlinear dimensionality reduction (NDR) methods, especially Metric-multidimensional scaling (MDS), are preferred for subsurface datasets due to their inherent complexity. While MDS retains intrinsic data structure and quantifies uncertainty, its limitations include unstabilized unique solutions invariant to Euclidean transformations and an absence of out-of-sample points (OOSP) extension. To enhance subsurface inferential and machine learning workflows, datasets must be transformed into stable, reduced-dimension representations that accommodate OOSP. Our solution employs rigid transformations for a stabilized Euclidean invariant representation for LDS. By computing an MDS input dissimilarity matrix, and applying rigid transformations on multiple realizations, we ensure transformation invariance and integrate OOSP. This process leverages a convex hull algorithm and incorporates loss function and normalized stress for distortion quantification. We validate our approach with synthetic data, varying distance metrics, and real-world wells from the Duvernay Formation. Results confirm our method's efficacy in achieving consistent LDS representations. Furthermore, our proposed "stress ratio" (SR) metric provides insight into uncertainty, beneficial for model adjustments and inferential analysis. Consequently, our workflow promises enhanced repeatability and comparability in NDR for subsurface energy resource engineering and associated big data workflows.Comment: 30 pages, 17 figures, Submitted to Computational Geosciences Journa

    Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Drawing and Proximity Analysis

    Get PDF
    In the past decade there has been a resurgence of interest in nonlinear dimension reduction. Among new proposals are “Local Linear Embedding,” “Isomap,” and Kernel Principal Components Analysis which all construct global low-dimensional embeddings from local affine or metric information. We introduce a competing method called “Local Multidimensional Scaling” (LMDS). Like LLE, Isomap, and KPCA, LMDS constructs its global embedding from local information, but it uses instead a combination of MDS and “force-directed” graph drawing. We apply the force paradigm to create localized versions of MDS stress functions with a tuning parameter to adjust the strength of nonlocal repulsive forces. We solve the problem of tuning parameter selection with a meta-criterion that measures how well the sets of K-nearest neighbors agree between the data and the embedding. Tuned LMDS seems to be able to outperform MDS, PCA, LLE, Isomap, and KPCA, as illustrated with two well-known image datasets. The meta-criterion can also be used in a pointwise version as a diagnostic tool for measuring the local adequacy of embeddings and thereby detect local problems in dimension reductions

    ‘A CATEGORY OF THEIR OWN’: QUANTITATIVE METHODS IN THE USE OF PILE-SORT DATA IN PERCEPTUAL DIALECTOLOGY

    Get PDF
    The purpose of this study is to investigate how Mississippi Gulf Coast Creoles perceive language differences in their home area. A pile-sort task was carried out in which respondents were given stacks of cards with local communities written on them and instructed to stack together the regions where people “talk the same.” Once the piles were made, the fieldworker discussed their sortings with the respondents. The stacks were analyzed by means of a hierarchal agglomerative cluster analysis and non-parametric multidimensional scaling with k-means cluster analysis overlays to extract the perceived dialect areas. The groupings reveal that respondent strategies are based on geographical concerns (e.g. distance), linguistic facts, and related ethnic identity beliefs. These areas were also analyzed using qualitative data from the post-pile-sort discussion and revealed the respondent’s attitudes, stances, and presupposed and implicated meanings that aided in the interpretation of their perceptions and attitudes with regard to local language ideology in the region. The results show that there are six perceived dialect areas on the Mississippi Gulf Coast. The Principal Component Analysis revealed that urban and rural is the biggest differentiation among dialect groups, followed by Frenchness and Southernness
    • 

    corecore