3,606 research outputs found

    Rigid, Affine and Locally Affine Registration of Free-Form Surfaces

    Get PDF
    International audienceIn this paper, we propose a new framework to perform nonrigid surface registration. It is based on various extensions of an iterative algorithm recently presented by several researchers (Besl and McKay, 1992; Champleboux et al., 1992; Chen and Medioni, 1992; Menq and Lai, 1992; Zhang, 1994) to rigidly register surfaces represented by a set of 3D points, when a prior estimate of the displacement is available. Our framework consists of three stages: - First, we search for the best rigid displacement to superpose the two surfaces. We show how to efficiently use curvatures to superpose principal frames at possible corresponding points in order to find a prior rough estimate of the displacement and initialize the iterative algorithm. - Second, we search for the best affine transformation. We introduce differential information in points coordinates: this allows us to match locally similar points. Then, we show how principal frames and curvatures are transformed by an affine transformation. Finally, we introduce this differential information in a global criterion minimized by extended Kalman filtering in order to ensure the convergence of the algorithm. - Third, we locally deform the surface. Instead of computing a global affine transformation, we attach to each point a local affine transformation varying smoothly along the surface. We call this deformation a locally affine deformation. All these stages are illustrated with experiments on various real biomedical surfaces (teeth, faces, skulls, brains and hearts), which demonstrate the validity of the approach

    Rigid, affine and locally affine registration of free-form surfaces

    Get PDF
    In this paper, we propose a new framework to perform f nonrigid surface registration. It is based on various extensions of an iterative algorithm recently presented by several researchers (Besl, Zhang, Chen, Menq, Champleboux) to f rigidly register surfaces represented by a set of 3D points, when a prior estimate of the displacement is available. Our framework consists of three stages: First, we search for the best f rigid displacement to superpose the two surfaces. We show how to efficiently use curvatures to superpose principal frames at possible corresponding points in order to find a prior rough estimate of the displacement and initialize the iterative algorithm. Second, we search for the best f affine transformation. We introduce differential information in points coordinates: this allows us to match locally similar points. Then, we show how principal frames and curvatures are transformed by an affine transformation. Finally, we introduce this differential information in a global criterion minimized by extended Kalman filtering. Third, we locally deform the surface. Instead of computing a global affine transformation, we attach to each point a f local affine transformation varying smoothly along the surface. We call this deformation a locally affine deformation. All these stages are illustrated with experiments on various real biomedical surfaces (teeth, faces, skulls, brains and hearts), which demonstrate the validity of the approach

    Higher-Order Momentum Distributions and Locally Affine LDDMM Registration

    Full text link
    To achieve sparse parametrizations that allows intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper higher-order momentum distributions in the LDDMM registration framework. While the zeroth order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local description of affine transformations and subsequent compact description of non-translational movement in a globally non-rigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction of the registration framework with higher-order momenta, we show the implications for sparse image registration and deformation description, and we provide examples of how the parametrization enables registration with a very low number of parameters. The capacity and interpretability of the parametrization using higher-order momenta lead to natural modeling of articulated movement, and the method promises to be useful for quantifying ventricle expansion and progressing atrophy during Alzheimer's disease

    Nonrigid reconstruction of 3D breast surfaces with a low-cost RGBD camera for surgical planning and aesthetic evaluation

    Get PDF
    Accounting for 26% of all new cancer cases worldwide, breast cancer remains the most common form of cancer in women. Although early breast cancer has a favourable long-term prognosis, roughly a third of patients suffer from a suboptimal aesthetic outcome despite breast conserving cancer treatment. Clinical-quality 3D modelling of the breast surface therefore assumes an increasingly important role in advancing treatment planning, prediction and evaluation of breast cosmesis. Yet, existing 3D torso scanners are expensive and either infrastructure-heavy or subject to motion artefacts. In this paper we employ a single consumer-grade RGBD camera with an ICP-based registration approach to jointly align all points from a sequence of depth images non-rigidly. Subtle body deformation due to postural sway and respiration is successfully mitigated leading to a higher geometric accuracy through regularised locally affine transformations. We present results from 6 clinical cases where our method compares well with the gold standard and outperforms a previous approach. We show that our method produces better reconstructions qualitatively by visual assessment and quantitatively by consistently obtaining lower landmark error scores and yielding more accurate breast volume estimates

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Diffeomorphic Metric Mapping of High Angular Resolution Diffusion Imaging based on Riemannian Structure of Orientation Distribution Functions

    Full text link
    In this paper, we propose a novel large deformation diffeomorphic registration algorithm to align high angular resolution diffusion images (HARDI) characterized by orientation distribution functions (ODFs). Our proposed algorithm seeks an optimal diffeomorphism of large deformation between two ODF fields in a spatial volume domain and at the same time, locally reorients an ODF in a manner such that it remains consistent with the surrounding anatomical structure. To this end, we first review the Riemannian manifold of ODFs. We then define the reorientation of an ODF when an affine transformation is applied and subsequently, define the diffeomorphic group action to be applied on the ODF based on this reorientation. We incorporate the Riemannian metric of ODFs for quantifying the similarity of two HARDI images into a variational problem defined under the large deformation diffeomorphic metric mapping (LDDMM) framework. We finally derive the gradient of the cost function in both Riemannian spaces of diffeomorphisms and the ODFs, and present its numerical implementation. Both synthetic and real brain HARDI data are used to illustrate the performance of our registration algorithm
    corecore