2 research outputs found

    Algorithmen fĂĽr Topologiebewusstsein in Sensornetzen

    Get PDF
    This work deals with algorithmic and geometric challenges in wireless sensor networks (WSNs). Classical algorithm theory, with a single processor executing one sequential program while having access to the complete data of the problem at hand, does not suit the needs of WSNs. Instead, we need distributed protocols where nodes collaboratively solve problems that are too complex for a single node. First we analyze a location problem, where the nodes obtain a sense of the network topology and their position in it. Computing coordinates in a global coordinate system is NP-hard in almost all relevant variants. So we present a completely new approach instead. The network builds clusters and constructs an abstract graph that closely reflects the topology of the network region. The resulting topology awareness suits the needs of some applications much better than the coordinate-based approach. In the second part, we present a novel flow problem, which adds battery constraints to dynamic network flows. Given a time horizon, we seek a flow from source to sink that maximizes the total amount of delivered data. As there is no prior work on this problem, we also analyze it in a centralized setting. We prove complexity results for several variants and present approximation schemes. The third part introduces the WSN simulator Shawn. By letting the user choose among different geometric communication models and data structures for the resulting graph, Shawn can adapt to many different setups, including mobile ones. Due to its design, Shawn is much faster than comparable simulation environments.Die vorliegende Arbeit beschäftigt sich mit algorithmischen und geometrischen Fragestellungen in Sensornetzwerken. Im Gegensatz zur klassischen Algorithmik, bei der ein einzelner Prozessor sequenziell Anweisungen abarbeitet und vollen Zugriff auf die Probleminstanz hat, werden hier verteilte Protokolle benötigt, bei denen die Knoten gemeinsam eine Aufgabe bewältigen, zu der sie allein nicht in der Lage wären. Zuerst untersuchen wir das grundlegende Problem, wie Sensorknoten ein Bewusstsein für ihre Position erlangen können. Motiviert daraus, dass das Problem, Koordinaten für ein globales Koordinatensystem zu bestimmen, in fast allen Varianten NP-schwer ist, wird ein vollkommen neuer Ansatz skizziert, bei dem das Netzwerk selbständig geometrische Cluster bildet und einen abstrakten Graphen konstruiert, der die Topologie des zugrunde liegenden Gebiets sehr genau widerspiegelt. Das sich daraus ergebende Positionsbewusstsein ist für einige Anwendungen dem klassischen euklidischen Ansatz deutlich überlegen. Der zweite Teil widmet sich einem Flussproblems für Sensornetzwerke, dass klassische dynamische Flüsse um Batteriebeschränkungen erweitert. Gesucht ist ein Fluss, der für gegebenen Zeithorizont die Datenmenge maximiert, die von einer Quelle zur Senke geschickt werden kann. Dieses Problem wird auch im zentralisierten Modell untersucht, da keine Vorarbeiten existieren. Wir beweisen Komplexitäten von Problemvarianten und entwickeln Approximationsschemata. Der dritte Teil stellt den Netzwerksimulator Shawn vor. Da der Benutzer zwischen verschiedenen geometrischen Kommunikationsmodellen wählen kann und das Speichermodell für den daraus resultierenden Graphen an den verfügbaren Speicher sowie an Simulationsparameter wie eventuell mögliche Mobilität der Knoten anpassen kann, ist Shawn hochflexibel und gleichzeitig deutlich schneller als vergleichbare Simulationsumgebungen

    Analysis of the energy latency trade-off in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) haben im letzten Jahrzehnt eine erhebliche Aufmerksamkeit erlangt. Diese Netzwerke zeichnen sich durch begrenzte Energieressourcen der Sensorknoten aus. Daher ist Energieeffizienz ein wichtiges Thema in Systemdesign und -betrieb von WSNs. Diese Arbeit konzentriert sich auf großflächige Anwendungen von WSNs wie Umwelt- oder Lebensraumüberwachung, die in der Regel den Ad-hoc-Einsatz von Knoten in großen Anzahl erfordern. Ad-hoc-Einsatz und Budgetbeschränkungen hindern Entwickler an der Programmierung der Knoten mit zusätzlichen Informationen wie beispielsweise Routingtabellen, Positionskoordinaten, oder Netzwerkgrenzen. Um diese Informationen zu beschaffen, ist es üblich verschiedene Initialisierungsschemen mit erheblichen Auswirkungen auf den Energieverbrauch und den Programmieraufwand zu implementieren. In Anbetracht dieser Beschränkungen ist ein neues Paradigma für die Initialisierung und den Betrieb von WSNs notwendig, das sich durch einfachen Einsatz und minimalen Energieaufwand auszeichnet. In dieser Arbeit nutzen wir Sink-Mobilität, um den Initialisierungsoverhead und den operativen Overhead zu reduzieren. Unser erster großer Beitrag ist ein Boundary Identification Schema für WSNs mit dem Namen "Mobile Sink based Boundary Detection" (MoSBoD). Es nutzt die Sink-Mobilität um den Kommunikationsoverhead der Sensorknoten zu reduzieren, was zu einer Erhöhung der Laufzeit des WSN führt. Außerdem entstehen durch das Schema keine Einschränkungen in Bezug auf Nodeplacement, Kommunikationsmodell, oder Ortsinformationen der Knoten. Der zweite große Beitrag ist das Congestion avoidance low Latency and Energy efficient (CaLEe) Routingprotokoll für WSNs. CaLEe basiert auf der virtuellen Partitionierung eines Sensorsbereich in Sektoren und der diskreten Mobilität der Sink im WSN. Unsere Simulationsergebnisse zeigen, dass CaLEe, im Vergleich zum derzeitigen State-of-the-art, nicht nur eine erhebliche Reduzierung der durchschnittlichen Energy Dissipation per Node erzielt, sondern auch eine geringere durchschnittliche End-to-End Data Latency in realistischen Szenarien erreicht. Darüber hinaus haben wir festgestellt, dass kein einziges Protokoll in der Lage ist, eine Best-Case-Lösung (minimale Data Latency und minimale Energy Dissipation) für variierende Netzwerkkonfigurationen, die beispielsweise mithilfe der Parameter Kommunikationsbereich der Nodes, Nodedichte, Durchsatz des Sensorfelds definiert werden können, bieten. Daher ist der dritte Hauptbeitrag dieser Arbeit die Identifikation von (auf unterschiedlichen Netzwerkkonfigurationen basierenden) „Operational Regions“, in denen einzelne Protokolle besser arbeiten als andere. Zusammenfassend kann man sagen, dass diese Dissertation das klassische Energieeffizienzproblem der WSNs (Ressource-begrenzte Knoten) aufgreift und gleichzeitig die End-to-End Data Latency auf einen annehmbaren Rahmen eingrenzt.Wireless Sensor Networks (WSN) have gained a considerable attention over the last decade. These networks are characterized by limited amount of energy supply at sensor node. Hence, energy efficiency is an important issue in system design and operation of WSN. This thesis focuses on large-scale applications of WSN, such as environment or habitat monitoring that usually requires ad-hoc deployment of the nodes in large numbers. Ad-hoc deployment and budget constraints restrict developers from programming the nodes with information like routing tables, position coordinates of the node, boundary of the network. In order to acquire this information, state-of-the-art is to program nodes with various initialization schemes that are heavy both from WSN’s (energy consumption) and programmer’s perspectives (programming effort). In view of these particular constraints, we require a new paradigm for WSN initialization and operation, which should be easy to deploy and have minimal energy demands. In this thesis, we exploit sink mobility to reduce the WSN initialization and operational overhead. Our first major contribution is a boundary identification scheme for WSN, named “Mobile Sink based Boundary detection” (MoSBoD). It exploits the sink mobility to remove the communication overhead from the sensor nodes, which leads to an increase in the lifetime of the WSN. Furthermore, it does not impose any restrictions on node placement, communication model, or location information of the nodes. The second major contribution is Congestion avoidance low Latency and Energy efficient (CaLEe) routing protocol for WSN. CaLEe is based on virtual partitioning of a sensor field into sectors and discrete mobility of the sink in the WSN. Our simulation results showed that CaLEe not only achieve considerable reduction in average energy dissipation per node compared to current state-of-the-art routing protocols but also accomplish lesser average end-to-end data latency under realistic scenarios. Furthermore, we observe that no single protocol is capable of providing best-case solution (minium data latency and minimum energy dissipation) under varying network configurations, which can be defined using communication range of the nodes, node density, throughput of the sensor field etc. Therefore, the third major contribution of this thesis is the identification of operational regions (based on varying network configurations) where one protocol performs better than the other. In summary, this thesis revisits the classic energy efficiency problem of a WSN (that have resource-limited nodes) while keeping end-to-end data latency under acceptable bounds
    corecore