354 research outputs found

    On the use of Deep Reinforcement Learning for Visual Tracking: a Survey

    Get PDF
    This paper aims at highlighting cutting-edge research results in the field of visual tracking by deep reinforcement learning. Deep reinforcement learning (DRL) is an emerging area combining recent progress in deep and reinforcement learning. It is showing interesting results in the computer vision field and, recently, it has been applied to the visual tracking problem yielding to the rapid development of novel tracking strategies. After providing an introduction to reinforcement learning, this paper compares recent visual tracking approaches based on deep reinforcement learning. Analysis of the state-of-the-art suggests that reinforcement learning allows modeling varying parts of the tracking system including target bounding box regression, appearance model selection, and tracking hyper-parameter optimization. The DRL framework is elegant and intriguing, and most of the DRL-based trackers achieve state-of-the-art results

    Advances in Deep Concealed Scene Understanding

    Full text link
    Concealed scene understanding (CSU) is a hot computer vision topic aiming to perceive objects exhibiting camouflage. The current boom in terms of techniques and applications warrants an up-to-date survey. This can help researchers to better understand the global CSU field, including both current achievements and remaining challenges. This paper makes four contributions: (1) For the first time, we present a comprehensive survey of deep learning techniques aimed at CSU, including a taxonomy, task-specific challenges, and ongoing developments. (2) To allow for an authoritative quantification of the state-of-the-art, we offer the largest and latest benchmark for concealed object segmentation (COS). (3) To evaluate the generalizability of deep CSU in practical scenarios, we collect the largest concealed defect segmentation dataset termed CDS2K with the hard cases from diversified industrial scenarios, on which we construct a comprehensive benchmark. (4) We discuss open problems and potential research directions for CSU. Our code and datasets are available at https://github.com/DengPingFan/CSU, which will be updated continuously to watch and summarize the advancements in this rapidly evolving field.Comment: 18 pages, 6 figures, 8 table

    A comprehensive survey on recent deep learning-based methods applied to surgical data

    Full text link
    Minimally invasive surgery is highly operator dependant with a lengthy procedural time causing fatigue to surgeon and risks to patients such as injury to organs, infection, bleeding, and complications of anesthesia. To mitigate such risks, real-time systems are desired to be developed that can provide intra-operative guidance to surgeons. For example, an automated system for tool localization, tool (or tissue) tracking, and depth estimation can enable a clear understanding of surgical scenes preventing miscalculations during surgical procedures. In this work, we present a systematic review of recent machine learning-based approaches including surgical tool localization, segmentation, tracking, and 3D scene perception. Furthermore, we provide a detailed overview of publicly available benchmark datasets widely used for surgical navigation tasks. While recent deep learning architectures have shown promising results, there are still several open research problems such as a lack of annotated datasets, the presence of artifacts in surgical scenes, and non-textured surfaces that hinder 3D reconstruction of the anatomical structures. Based on our comprehensive review, we present a discussion on current gaps and needed steps to improve the adaptation of technology in surgery.Comment: This paper is to be submitted to International journal of computer visio

    Deep Feature Learning and Adaptation for Computer Vision

    Get PDF
    We are living in times when a revolution of deep learning is taking place. In general, deep learning models have a backbone that extracts features from the input data followed by task-specific layers, e.g. for classification. This dissertation proposes various deep feature extraction and adaptation methods to improve task-specific learning, such as visual re-identification, tracking, and domain adaptation. The vehicle re-identification (VRID) task requires identifying a given vehicle among a set of vehicles under variations in viewpoint, illumination, partial occlusion, and background clutter. We propose a novel local graph aggregation module for feature extraction to improve VRID performance. We also utilize a class-balanced loss to compensate for the unbalanced class distribution in the training dataset. Overall, our framework achieves state-of-the-art (SOTA) performance in multiple VRID benchmarks. We further extend our VRID method for visual object tracking under occlusion conditions. We motivate visual object tracking from aerial platforms by conducting a benchmarking of tracking methods on aerial datasets. Our study reveals that the current techniques have limited capabilities to re-identify objects when fully occluded or out of view. The Siamese network based trackers perform well compared to others in overall tracking performance. We utilize our VRID work in visual object tracking and propose Siam-ReID, a novel tracking method using a Siamese network and VRID technique. In another approach, we propose SiamGauss, a novel Siamese network with a Gaussian Head for improved confuser suppression and real time performance. Our approach achieves SOTA performance on aerial visual object tracking datasets. A related area of research is developing deep learning based domain adaptation techniques. We propose continual unsupervised domain adaptation, a novel paradigm for domain adaptation in data constrained environments. We show that existing works fail to generalize when the target domain data are acquired in small batches. We propose to use a buffer to store samples that are previously seen by the network and a novel loss function to improve the performance of continual domain adaptation. We further extend our continual unsupervised domain adaptation research for gradually varying domains. Our method outperforms several SOTA methods even though they have the entire domain data available during adaptation
    • …
    corecore