
Received July 15, 2021, accepted August 23, 2021, date of publication August 30, 2021, date of current version September 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3108623

On the Use of Deep Reinforcement Learning
for Visual Tracking: A Survey
GIORGIO CRUCIATA, LILIANA LO PRESTI , AND MARCO LA CASCIA
Department of Engineering, University of Palermo, 90128 Palermo, Italy

Corresponding author: Liliana Lo Presti (liliana.lopresti@unipa.it)

This work was supported in part by the Italian PRIN 2017 I-MALL Grant 2017BH297_004, and in part by the PON IDEHA
Grant ARS01_00421.

ABSTRACT This paper aims at highlighting cutting-edge research results in the field of visual tracking
by deep reinforcement learning. Deep reinforcement learning (DRL) is an emerging area combining recent
progress in deep and reinforcement learning. It is showing interesting results in the computer vision field and,
recently, it has been applied to the visual tracking problem yielding to the rapid development of novel tracking
strategies. After providing an introduction to reinforcement learning, this paper compares recent visual
tracking approaches based on deep reinforcement learning. Analysis of the state-of-the-art suggests that
reinforcement learning allows modeling varying parts of the tracking system including target bounding box
regression, appearance model selection, and tracking hyper-parameter optimization. The DRL framework is
elegant and intriguing, and most of the DRL-based trackers achieve state-of-the-art results.

INDEX TERMS Computer vision, machine learning, video-surveillance, deep reinforcement learning, visual
tracking.

I. INTRODUCTION
In the last decade, deep convolutional neural networks
(CNNs) [1], [2] have consistently shown impressive perfor-
mance in many vision tasks, especially object detection and
recognition [3]–[5]. The success of such models seems to
be ascribable to their capability of extracting higher-level
features through their multiple-layer structure [6]. Despite
the lack of suitable error bounds and convergence
guarantees [7], [8], such approaches have greatly outper-
formed hand-crafted features and relieved the expert from
the burden of designing ad-hoc features depending on the
problem at hand. In turn, this is permitting to reconsider
well-known problems in a new light (i.e., object detection [9],
visual tracking [10], pose estimation [11]).

In the field of visual tracking, the use of deep learn-
ing (DL) allows achieving much higher performance than in
the past, as detailed in former surveys/reviews of the state-
of-the-art [12]–[15]. Indeed, the adoption of deep models has
allowed learning more discriminative target feature represen-
tation. Nonetheless, it is still unclear which deep architecture
can be effective for tracking [16], [17].

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Shen .

Another issue is the selection of the most suitable train-
ing strategy to use. The deep model can be retrained at
test time (eventually only partly as in [16]) by adapting the
model parameters to the most recent target appearance during
tracking. Such a self-training strategy uses uncertain labels
and can result in drifting of the tracker. Hence, approaches
in [10], [18]–[20] avoided the model parameters adaptation
by training a Siamese network to locate the target within
a search region ideally centered in the last estimated target
location. In the latter case, the model parameters do not
change at test time.

All above (representative) tracking methods are based on
deep models trained in a supervised way on large training
datasets in which the exact annotation of the target bounding
box is provided at each frame. There is a trend to make
the system learn through trial-and-error approaches able to
reinforce the effective system abilities and correct the wrong
attitude. Themain paradigm implementing such amechanism
is reinforcement learning (RL) [21]. In RL, the system is
generally called the agent. The agent is characterized by a
state, and it interacts with the environment by taking deci-
sions, often called actions. Each action has consequences
on the environment and the agent’s state. As a consequence
of the selected action, the state transits into another one,

120880 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-0833-4403
https://orcid.org/0000-0002-8766-6395
https://orcid.org/0000-0002-6959-0569

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

and the agent receives a reward indicating how good is the
new reached state. In RL, the goal is letting the agent learn
a policy, namely a function, to decide, given a state, what
action is better to take to follow the optimal trajectory in the
state space or, equivalently, such to maximize the expected
future reward. The triplet (state, action, reward) is a sample.
RL takes advantage of simulations during which the agent
uses its current policy to solve the problem by taking a
sequence of actions that let its state changing over time.
Hence, the simulation generates a set of samples used to
gradually refine the agent’s policy. Under this point of view,
RL is a self-learning approach. In a discrete state-action
setting, the policy is a table.

The recent combination of deep and reinforcement learn-
ing yields deep reinforcement learning (DRL) [22], which
has been used to solve problems where the state is
continuous-value. In such a case, the learned policy is a
function represented by a deep model. DRL has been applied
in several computer vision problems such as visual track-
ing [23], activity localization [24], object detection [9],
video recognition [25], and segmentation [26]. In particu-
lar, DRL-based visual tracking has grown rapidly in recent
years, and different methods have been proposed for target
location prediction, tracking hyper-parameter optimization,
or appearance model selection. In the most common appli-
cation of DRL in visual tracking, the agent has to predict
the target location (bounding box) in a frame (see Fig. 1) by
iteratively selecting suitable actions. The state is generally an
image representing the content of the current bounding box.
Actions represent transformations to the current bounding
box coordinates. The agent’s goal is to select a sequence of
shifts and scaling transformations to center the target in the
frame. The reward is modeled based on the changes to the
Intersection-over-Union (IoU) of the current bounding box
and the ground-truth one (the selected action can increase or
decrease the IoU value).

This is not the only way in which DRL has been employed
in visual tracking. In this paper, our goal is to summarize the
many ways in which DRL has been used to implement novel
visual object tracking strategies.

In Sec.II, we formulate the visual tracking problem and
provide background information on the most adopted track-
ing paradigms, including recent trends in the development
of deep tracking methods. In Sec. III, we explain how the
tracking problem can be cast into a DRL one; In Sec. IV,
we summarize RL algorithms whose evolution yielded to
the current DRL frameworks. In particular, three cate-
gories of DRL algorithms are presented: value-based algo-
rithms, policy gradient methods, and actor-critic approaches.
Sec. V reviews tracking papers based on RL and DRL.
Sec. VI compares the reviewed approaches by their pub-
lished results on publicly available datasets, Sec. VII attempts
a theoretical comparison by focusing on the main com-
ponents of the surveyed works, and Sec. VIII focuses on
the limitations of the analyzed algorithms and suggests
future directions. Finally, Sec. IX draws conclusions by

FIGURE 1. In most visual tracking approaches based on DRL, a deep
model takes in input a patch of the image, named state, and predicts a
transformation of the bounding box (such as a shift to the left/right/
up/down or re-scale), named action. The selected action is used to
modify the bounding box and yields to a new state, which is then
processed by the model. The process aims at centering the target and is
iterated until a stop action is selected. The resulting bounding box will be
the initial state to locate the target in the next frame.

remarking on the pros and cons of using DRL in visual
tracking.

II. VISUAL TRACKING FORMULATION
Visual tracking has a long history that has been summarized
in former surveys/reviews of the state-of-the-art [12]–[15].
In this section, we only provide basic knowledge by mostly
highlighting the challenges to consider when designing a
tracking algorithm.We limit our attention to methods devised
for 2D visual object tracking (VOT) with a single camera.

Visual tracking is the problem of analyzing a video, namely
a sequence of N images v = {I1, I2, . . . , IN }, and detect-
ing the location l on the image plane of a target moving
in the environment over time or, more formally, estimating
li = (xi, yi) with i ∈ [1,N] indexing the image frames.
Visual tracking methods strongly rely on two main fea-

tures: target motion and appearance. The problem is made
harder in the case of moving cameras because the target
motion is coupled with the camera ego-motion resulting in
higher uncertainty of the target location.

Target motion dynamics have been modeled by Kalman
filter [27], Extended/ Unscented Kalman Filter [28], [29], and
particle filter [30] in [31]–[34]. In such approaches, appear-
ance models were used as correction tools or to estimate the
observational likelihood.

A. TRACKING-BY-DETECTION AND BY-CORRELATION
Visual tracking was profoundly changed by the development
of the tracking-by-detection paradigm [35], [36], which has
the merit of unifying the field of tracking in static and
moving cameras formerly modeled separately. In tracking-
by-detection (see Fig. 2), the goal is that of training online
(meaning at test time) a detector specialized in recognizing
the target in the scene. It turns the visual tracking problem
into a binary classification one whose aim is that of clas-
sifying images into target/non-target. In the most simplistic
form, its main ingredients are a strong feature representation,
a classifier, an online procedure to re-train the classifier at

VOLUME 9, 2021 120881

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

FIGURE 2. In tracking-by-detection, feature representations of image
patches sampled around the last known target location are extracted,
then the classifier is used to discriminate between target/non-target.

test time, a strategy to assemble an appropriate training set of
positive and negative samples collected at test time. Tracking-
by-detection algorithms suffered from the problem of defin-
ing suitable feature representations to discriminate between
target and background. Furthermore, the self-training strategy
used to re-train the classifier with uncertain labels generally
results in the drifting of the tracker.

Another approach to visual tracking is that of learning the
template that allows locating the target in the training images.
This idea is at the basis of the correlation filters (CFs).
CFs are trained in a discriminative way to estimate a tem-
plate that, when correlated to the image, responds to the
target rather than to the background [37]. Learning may
be done in the Fourier space where correlation turns into
an element-wise product (see Fig. 3), while supervision is
provided in terms of heatmaps whose peaks are centered
on the object of interest (Average of Synthetic Exact Fil-
ters (ASEF) [37]). Minimum Output Sum of Squared Error
(MOSSE) [38] and spatially regularized discriminative CF
(SRDCF) [39] were proposed to learn ASEF-like filters with
limited samples to be specifically used in visual tracking.

FIGURE 3. Training of a CF. The search region is element-wise multiplied
with a 2D weight function, then FFT is computed and element-wise
multiplied with the CF. The IFFT allows the computing of a heatmap
whose peak indicates the target location. Based on such target location,
an image sample set is assembled to retrain the CF.

B. DEEP VISUAL TRACKING
In recent years, deep learning techniques have been widely
used in visual tracking. Several architectures, such as
CNNs [40], fully convolutional neural networks [41], autoen-
coders [42], Siamese networks [43], Recurrent Neural Net-
works (RNNs) [44], [45], generative adversarial networks
(GAN) [46], have all been adopted in tracking (see Fig. 4).
The interested reader can refer to the following excellent
surveys for more details [12]–[15]. Learning of the model
parameters is, in general, done in a supervised way.

Recently, tracking models have also been trained through
meta-learning [47], which aims at training a model on
a variety of learning tasks. The learned models are then
used to solve a novel learning task given a reduced set of

training samples. The idea has been adopted to the train-
ing of recurrent networks [48]. Recently, a model-agnostic
meta-learning approach (MAML) [49] has been introduced
to extend meta-learning to models other than RNN.

The time required for training deep models is, in general,
very high, which conflicts with the need to adapt the deep
model in visual object tracking at test time. Under this point
of view, deep tracking techniques have used either test-time
model adaptation strategies or pre-trained models for which
parameters are never updated at test time.

1) TRACKING BY TEST-TIME MODEL ADAPTATION
First attempts to adapt deep models to the target appearance
changes were re-training the model (or part of it) from time
to time on positive/negative patches cropped from each frame
around the target location, [50], [51].

In multi-domain tracking (MDNet) [16], fully-connected
(FC) layers are re-trained at test-time to discriminate
between target/non-target and extract target-specific features.
Convolutional layers are pre-trained on multiple videos to
extract shared, general feature representations. In real-time
MDNet (RT-MDNet) [52], the tracking process is speed-up
by including a RoiAlign layer [5] to improve target localiza-
tion during tracking.

In [53], discriminative CFs are trained on convolutional
features from a pre-trained VGG model. In [54], CFs are
adaptively trained on the outputs of each CNN layer to use
semantics and fine-grained details for handling large appear-
ance variations.

Recently, in ATOM [55], three modules are used. The
target estimation module is trained offline to predict the
IoU overlap with the target. From this output, target-specific
appearance information is extracted. The IoU predictor mod-
ule receives such target features and proposal bounding boxes
in the test frame and estimates the IoU for each input box.
Finally, the target classificationmodule is trained, at test time,
to output target confidences in a fully convolutional way.

In Vital [56], adversarial learning is used to augment data
in the feature space rather than in the image space. The main
goal is that of exploiting robust features over time to track
the target. At test time, the model is incrementally updated
frame-by-frame.

Meta-learning has been applied to the visual tracking prob-
lem in [57]–[60]. The work in [61] (DiMP) proposes a two
branches network; one of the branches predicts a model of
the target appearance in terms of weights of a convolutional
layer. The method has been improved in [62] by integrating a
regression formulation into both branches of DiMP. The work
in [60] adopts MAML [49] to turn a general-purpose object
detector into a target-specific one by training on a single
image at test time.

2) TRACKING BY AD-HOC PRE-TRAINED MODELS
Approaches in [10], [18]–[20] have pre-trained a Siamese
network to locate the target within a search region. Once
trained, the model is not fine-tuned on the target appearance.

120882 VOLUME 9, 2021

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

FIGURE 4. The most commonly adopted architectures for tracking. (a) CNN model where convolutional layers are followed by fully
connected (FC) ones. (b) Fully convolutional model can output feature maps. (c) Autoencoder can encode and decode its input. (d) In the
Siamese network, the two branches share the same architecture and parameters. A layer is used to merge the branch outputs. Additional
FC layers can be also included. (e) LSTM works like a memory of its inputs (generally from a CNN). Additional FC layers can be added to the
model.

At test time, the network can predict the target’s bounding
box by ranking proposed candidate boxes [18], regressing it
directly from images [10], or estimating its center position
and scale [19], [20].

YCNN [20] combines shallow features (from the first con-
volutional layer) with deeper features. The Siamese network
returns a prediction map in which each point indicates how
likely the target appears in the search image.

In the Siamese region proposal network (Siamese-
RPN) [63], a template branch and a detection branch are
trained end-to-end on a large dataset of image pairs. The
template branch encodes the target appearance information
into the RPN [64] feature map. At test time, meta-learning
is used by reinterpreting the output of the template branch as
parameters to predict the detection kernels.

In [65] (Siam-RPN++), it is noted that the performance of
the Siamese network-based tracking algorithm can improve
when using deeper networks if some precautions are taken
in their development. In particular, a novel sampling strategy
is proposed, and multi-branches features are extracted from
various layers of the network to infer the target location.

Instead of using a Siamese net, the work in [66] uses
a conv-LSTM on top of a fully convolutional CNN. The
network takes in input a cropped target image, and the
LSTMproduces a target-specialized filter. The target location
is predicted by convolving the filter to the feature map of the
next frame to estimate the target response map.

III. MODELING VISUAL TRACKING BY DRL
Reinforcement Learning (RL) is an approach focused on
goal-directed learning from interactions. Problems solved
by RL are modeled as Markov decision processes (MDPs),
which are discrete-time stochastic processes modeling
sequential decision making.

In a typical RL setting, shown in Fig. 5, there is an agent
that interacts with the environment at discrete time steps,
t = 0, 1, 2, At each time t , the agent decides on the action
to perform, At . The decision depends on the state St encoding
the agent’s perceived environment (whatever information is
available to the agent about the environment). During train-
ing, once the action has been taken, the agent receives a
signal called reward, Rt+1 measuring the goodness of the
taken decision in state St . Furthermore, the action changes the

FIGURE 5. In RL, an agent interacts with the environment. Information
about the environment at time t is encoded in the state St . Based on the
learned policy, the agent takes the action At , which will have an impact
on the environment and will determine the new state St+1. During
training, the agent receives a reward Rt+1 depending on At and St . The
reward is used to modify the agent’s value function and the policy.

environment, which transits in a new state encoded by St+1.
In such a setting, the future state depends only on the current
state St and the taken action At (Markov property).

As shown in Fig. 6, RL can be used to model the
visual tracking problem in several ways. In most cases,
the tracker itself is a RL-agent predicting the future target
location (specifically the bounding box); in others, the agent
solves auxiliary tasks to improve the tracking strategy or
takes decisions affecting the target appearance model. All
RL approaches for visual tracking differ mostly in the defini-
tion of the goal and, consequently, of the state and the action
set.

In most of the approaches, the state is an image patch
extracted based on the hypothetical target bounding box, i.e.
the estimated target location at the previous frame. The dis-
crete action set represents possible changes to the bounding
box coordinates through horizontal/vertical shifts and scale
adjustments. At each frame, iteratively, the bounding box is
refined based on the sequence of actions taken by the agent
until a stop action is selected, and the final estimated target
location is used to process the next frame. The action may
also assume continuous values correlated with the number of
pixels or scale factor to be used to refine the bounding box
of the target. In this case, each frame is processed only once,
namely the sequence of actions taken by the agent has a length
equals to the number of frames in the video. The state can be
augmented by also considering a template of the target, which
is useful in Siamese network-based methods.

VOLUME 9, 2021 120883

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

FIGURE 6. The agent can make decisions about the target bounding box,
the tracking strategy to adopt, or the target appearance model. The
bounding box can be refined by iterative discrete changes or by
continuous values changes. Agents can also select the tracking
hyper-parameters, the search region where to locate the target, or,
especially in multi-object tracking, the tracker state, namely re-initialize,
update or delete the tracker from the pool of active ones. Finally,
the agent can decide when to update the appearance model or what
model to select from a pool of available ones.

Another way to use DRL for tracking is letting the agent
accounting for the target appearance changes. In this case,
the action set represents either the selection of the target
template to be fed in input to the model or of the correlation
filter to use from a pool of pre-existing filters or of a specific
tracker from an ensemble.

RL-agent can also be used to decide the most suitable
tracking strategy. For instance, the agent can decide to
track or re-detect the target or to enlarge the search area
to improve target localization. There are also interesting
approaches where the agent has to decide the (continu-
ous value) hyper-parameters (i.e., scale step, learning rate,
window weight, etc.) on which the tracking results greatly
depend.

In all the above methods, it is necessary to extract features
from an image, and a deep model is adopted (generally a
Siamese network or a CNN sometimes coupled to a recur-
rent model). The extracted features are fed in input to some
other (generally small) network representing the policy of the
agent. During training, the agent receives a reward generally
defined based on the intersection-over-union of the estimated
bounding box and the true bounding box. As we will discuss
later, this means that even if the agent is not trained to regress
the bounding box, still the bounding box annotation may
be necessary to compute the reward. However, the reward
function can be learned from data.

A deeper analysis of DRL-based tracking approaches
has highlighted some implementation details that can be
decisive for the success of these algorithms, such as the
augmentation of the state with the sequence of actions
selected by the agent in previous iterations. In the follow-
ing, we will describe the above-mentioned and other track-
ing approaches more in detail. To fully describe how such
methods have been implemented, we first provide an intro-
duction to the most adopted RL algorithms and to their
modification in presence of deep models defining the agent’s
policy.

IV. FROM RL TO DRL
In RL, the sequential decision problem is cast into an opti-
mization one where the agent learns to take actions by maxi-
mizing the expected discounted reward obtained for its future
decisions:

Gt =
∞∑
k=0

γ kRt+k+1 (1)

where γ is a discount rate 0 ≤ γ ≤ 1. Since each reward
depends on the state and the selected action, the goal of the
agent is to determine a policy π , namely a mapping from the
perceived state to the action to take when in the given state.
Hence, the policy fully defines the agent’s behavior. When
states and actions are both discrete, the policy can be designed
as a lookup table. Whenever states are continuous values,
the policy can be defined in terms of continuous variable
functions.

Let S andA(s) be the sets of states and actions that the agent
can take in the state s ∈ S respectively. The value function
(V-function) is defined as

vπ (s) = Eπ [Gt |St = s]

= Eπ

[
∞∑
k=0

γ kRt+k+1|St = s

]
= Eπ [Rt+1 + γGt+1|St = s] ,∀s ∈ S. (2)

Such a function depends on the immediate reward for the
taken action and on the discounted value of future rewards.
In other words, the value function vπ (s) measures how good
is for the agent being in state s.

The action-value function, denoted by qπ (s, a) and called
also Q-function, is the agent’s expected return when, after
selecting action a while in the state s, it starts following the
policy π thereafter:

qπ (a, s) = Eπ [Gt |St = s,At = a]

= Eπ

[
∞∑
k=0

γ kRt+k+1|St = s,At = a

]
,

∀s ∈ S, a ∈ A(s). (3)

Value functions are used to establish if a policy is optimal.
When following an optimal policy, we can write the optimal
value function q∗ in terms of the optimal value function v∗ as
follows:

q∗(s, a) = E [Rt+1 + γ v∗(St+1)|St = s,At = a] . (4)

The optimal value function in the finite MDP satisfies
the Bellman equation, and dynamic programming-based or
heuristic search approaches can be devised to learn the opti-
mal value function from experience [21], [67]. Such methods
are called model-based approaches. Model-free methods do
not rely on a model of the environment and are explicitly
trial-and-error learners generally based on Monte Carlo and
temporal-difference methods.

120884 VOLUME 9, 2021

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

A. REWARDING THE AGENT
In RL, the reward is independent of what the agent’s correct
action should be. The correct action is, in general, unknown,
and the reward assesses the agent’s progress in achieving its
goal. Designing the reward function is crucial for the success
of RL algorithms, and sometimes a learning acceleration is
achieved by providing an initial guess for the value function
or by ‘‘behavioral shaping’’ where the reward function is
refined with the agent’s learning progresses [21], [68]. The
reward can also be assigned by comparing the agent’s deci-
sions to those of an ‘‘expert’’, which can be represented by
either another agent or a trained system. This strategy is often
called imitation learning, learning from demonstration, and
apprenticeship learning.

In the simple tracking strategy represented in Fig.1,
the reward should measure the effect of the action taken by
the agent on the tracking results. Often, a function of the IoU
of the new bounding box and the ground-truth one is used.

Finally, inverse reinforcement learning (IRL) learns an
unknown reward function under which the expert’s behavior
is optimal. Eventually, using direct reinforcement learning
and the learned reward function, it is possible to learn an
optimal policy for the RL agent. However, IRL problems are
in general ill-posed as every policy is optimal for the null
reward. Furthermore, there might be many reward functions
under which the experts’ behavior is optimal.

B. POLICY LEARNING
Three families of model-free approaches can be identi-
fied: value-based methods, policy gradient methods, and
actor-critic approaches.

If the tracking strategy in Fig. 1 implements a value-based
approach, then, given the image patch corresponding to the
current bounding box, the deep model would return
the q-values associated with each possible action, that is the
expected discounted future reward. The agent would select
the action (bounding box transformation) yielding the highest
q-value. If a policy gradient approach is adopted, the deep
model returns a probability distribution over the actions. The
agent would select the action with the highest probability.
Finally, if an actor-critic approach is used, the actor would
return a probability distribution over the actions. The agent
would select the action with the highest probability. The
image patch corresponding to the new transformed bounding
box can be assessed by the critic to get a confidence score or
the V-function value.

1) VALUE-BASED APPROACHES
Value-based approaches aim at learning iteratively the policy
by estimating the Q-function. Given the current estimate of
the Q-function and a state s, the action a is chosen based on
a policy.1 Once a has been taken, the Q-function is updated.

1 The action a might be selected by an ε-greedy policy: randomly from
the set of possible actions with probability ε or a = argmaxa Q(s, a)
otherwise. Q-functions different than the learned one can be adopted as well.
This strategy helps the agent to trade-off between the need of exploiting its
experiences and exploring new possible solutions.

Learning the policy can be achieved by adopting Monte
Carlo-based approaches; However, the resulting learning pro-
cess can be slow because the Q-function is updated after
the whole sequence of decisions is observed. In contrast,
in Temporal-Difference (TD) learning, updates are done at
every step (namely, after an action is taken) without waiting
for the whole sequence of decisions to be observed. A popular
TD-learning approach is the Q-learning algorithm [69].

In Q-learning, the Q-function is updated independently of
the actual future action a′ selected in s′:

Q(s, a) = Q(s, a)+ α
[
r + γ max

a′
Q(s′, a′)− Q(s, a)

]
. (5)

However, since action selection and Q-function updating
are both based on the maximum of the Q-function itself,
the learning process can led to a biased estimation. To make
the method more robust, in double Q-learning algorithms,
two independent estimates of the Q-function, Q1 and Q2, are
maintained. Actions can be selected via the Q1 function and
assessed by the Q2 function.
The former techniques can be generalized by replacing the

tabular functions with functions parameterized by a weight
vector w ∈ Rd , such as deep models. This yields to Deep
Q-Learning (DQL). Given a policy π , if the true action-value
function qπ (s, a) is known, then the approximate action-value
function q̂(s, a,w) could be learned by minimizing the mean
squared value error defined as

L(w) =
∑
s,a

µ(s, a)[qπ (s, a)− q̂(s, a,w)]2 (6)

where µ(s, a) represents the state-action distribution. Given
a training set in which state-action pairs appear with a given
distributionµ, the above error can beminimized by stochastic
gradient descent (SGD). The target action-value qπ (st , at)
can be substituted with the discounted expected return Gt or
with the target value yt = E[r + γ maxa′ q̂(s′, a′,wt)], which
is its approximation. The advantage of the former model
is that it accommodates for continuous value states, while
actions are, in general, still discrete values.

In practice, the above training strategy fails because the
sequential states are strongly correlated, and the target value
is changing during training. This leads to a divergence of
the Q-function. To account for such issues, in [70], it has
been proposed to endure new updates while also exploiting
previous experience. This mechanism is known as experience
replay, where updates are not done sample-by-sample but
through batches of transition experiences collected in the
form of (s, a, r, s′). The work in [22] applies DRL to train
networks end-to-end directly from visual data by sampling
mini-batches of tuples (s, a, r, s′) from the replay memory.
As an alternative to experience replay, multiple agents were
asynchronously executed in parallel to decorrelate the data
used to update the model weights in several RL approaches,
including deep Q-learning [71].

As for the changing target value yt from iteration to iter-
ation, a target network different than the optimized one can

VOLUME 9, 2021 120885

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

be used [22] and updated by the learned network parameters
everyC steps [72]. Later on, in [73],DoubleDQL implements
the concept of double Q-learning to avoid that action-values
get overestimated.
Dueling DQL (DDQL) [74] proposes to decompose the

Q-value in the sum Q(s, a) = v(s) + A(s, a), where v(s) is
the state value while A(s, a) measures the advantage of tak-
ing the action a in the state s. Finally, in [75], a variant
of the Q-learning algorithm,Normalized Advantage Function
(NAF), is proposed to tackle with continuous actions.

2) POLICY GRADIENT METHODS
Policy gradient methods approximate the policy with a func-
tion depending on a learnable weight vector θ ∈ Rd .
Once θ has been learned, the policy function provides for
each action a the probability π (a|s, θ) of taking action a
when in state s. Parameters θ are learned by maximizing a
performance measure J (θ) such that, by the gradient ascent
algorithm, the parameters can be iteratively updated by:

θt+1 = θt + α∇J (θt). (7)

When a finite sequence of decisions is given, such that we
know s0, a0, r1, s1, a1, . . . , sT−1, aT−1, rT , sT with the last
state sT being a terminal state (this sequence is often called
episode or trial), then the function J (θ) can be defined in
terms of vπ (θ)(s0), which is the expected return in state s0 for
all future decisions. In such a case, with µ(s) =

∑
a µ(s, a),

the policy gradient theorem [21] establishes that:

∇J (θ) ∝
∑
s

µ(s)
∑
a

[qπ (s, a)− b(s)]∇π (a|s, θ)

= Eπ

[∑
a

[qπ (st , a)− b(st)]∇π (a|st , θ)

]
(8)

where b(s) is an arbitrary baseline that does not depend on the
action a and contributes to reduce variance of the learning
approaches. The Eq. 8 is used to develop the most widely
adopted algorithm for policy learning: theREINFORCE algo-
rithm [21], [76]. In REINFORCE, by taking advantage of
Eq. 3 and remembering that the baseline does not depend on
the policy π , the gradient of the performance measure J (θ) is
computed as:

∇J (θ) = Eπ

[∑
a

π (a|st , θ) [qπ ([st , a)−b(st)]
∇π (a|st , θ)
π(a|st , θ)

]
= Eπ [[Gt − b(st)]∇ lnπ (a|st , θ)]

and the parameters θ are updated based on the following
equation:

θt+1 = θt + α[Gt − b(st)]∇ lnπ (a|st , θt). (9)

A possible choice for the baseline is that of using b(s) =
v̂(s,w), a functional learnable approximation of the value
function.

3) ACTOR-CRITIC METHODS
Actor-critic (AC) methods jointly learn approximation func-
tions for both the policy and the value function. The ‘actor’
learns the policy function, and the ‘critic’ assesses the actor’s
decisions by estimating the value function v̂(s,w) (or, in other
implementations of the method, the Q-function q̂(s, a,w)).
A variant of ACmethods is theDeterministic Policy Gradi-

ent algorithm (DPG) [77], where the policy is deterministic
and approximated by a function π (·, θ) parameterized such
that, given the state s, action a is determined through the
policy a = π (s, θ). DPG is the limiting case, as policy
variance tends to zero, of the stochastic policy gradient [77].

In the deep versions of the AC methods, both actor and
critic are typically represented by CNNs. Several variants
have been proposed in the past years. The Asynchronous
Advantage Actor-Critic (A3C) algorithm [71] maintains a
policy π (at , st , θ) and a value function v(st ,w). Multiple
agents, in parallel environments, independently follow and
update the policy. This helps to break correlations among
samples. A2C is a variant of the A3C algorithm that does not
take advantage of asynchronous updating.
Deep Deterministic Policy Gradient (DDPG) [78] adapts

DPG and the main ideas in DQL, such as using an expe-
rience replay memory and a target network, to the learning
of a policy for the continuous action domain. Twin Delayed
DDPG (TD3) [79] improves over DDPG by including dou-
ble Q-learning, and delaying policy updates with respect to
the Q-function updates (the Q-function is updated more fre-
quently than the policy). In Trust Region Policy Optimization
(TRPO) [80], a surrogate objective function, defined in terms
of the advantage function and the gain of the new policy
with respect to the old one, is maximized by constraining the
scale of the Kullback-Leibler divergence between the old and
the new policy. In contrast, in Proximal Policy Optimization
(PPO) [81], the KL-divergence penalty/constraint is not used
and the minimum between the objective function and its
clipped version is maximized instead. The clip function aims
at simplifying the learning process.

V. DRL-BASED VISUAL TRACKING
First attempts to use RL for visual tracking have focused on
feature/appearance model selection [82], [83], PTZ camera
parameter estimation [84], tracking strategy selection [85],
[86], or tracking hyper-parameters estimation [87]. They have
mostly adopted the Q-learning algorithm and have greatly
suffered from the difficulty of representing properly the state.

An attempt to use IRL is proposed in [88], where the life
of a target is modeled as a MDP. Target state values are:
active, lost, tracked, inactive. State transitions are determin-
istic and pre-defined; actions represent the switch from a
state to another. The trained reward function is the confidence
returned by a classifier/detector and depends on the current
target state. A similar idea is employed in [89], where the
agent also decides whether or not to update the discriminative
Correlation Filter (CF) used to detect the target. Hierarchical

120886 VOLUME 9, 2021

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

discriminative CF (HCF) [54] are learned from convolutional
features computed by a pre-trained CNN. The merit of these
works is that of modeling the visual tracking problem as a
sequential decision one. However, the use of RL for tracking
has become popular after the introduction of DRL.

In the following, we summarize DRL-based visual tracking
approaches based on the categorization shown in Fig. 6.
When summarizing such works, we also refer to the catego-
rization in Fig. 7 where the same works are analyzed under
the DRL algorithm used to implement the method. As shown
in the figure, methods can take advantage of some form of
adaptation at test time (re-training of part of the network
or of the employed CFs) or can use models pre-trained for
tracking purposes without parameters adaptation at test-time
(blue and yellow circles respectively). The methods differ for
the adopted RL framework: deep Q-learning (DQL), deep
policy gradient (D-PG) and actor-critic (AC) approaches.

FIGURE 7. Categorization of DRL-based visual tracking approaches.
Methods can take advantage of some form of test time adaptation or can
be ad-hoc pre-trained (blue and yellow circles respectively). The methods
differ for the adopted RL framework: deep Q-Learning (DQL), deep policy
gradient (D-PG), and deep Actor-Critic (AC) methods.

Where not diversely specified, the agent’s reward is
defined as a function of the Intersection-over-Union (IoU)
of the predicted and annotated target bounding boxes. Some-
times, the improvement of the IoU measured before and after
taking action at is used. In some approaches, pre-training of
the neural networks is done in a supervised form. In this case,
the instantaneously optimal action to select is derived based
on the ground truth available with the training data.

A. DECIDING BOUNDING BOX ADJUSTMENTS
The target bounding box can be adjusted frame-by-frame
by a sequence of discrete actions representing bounding-box
shifts/scaling, or by a single continuous-value action repre-
senting changes to the bounding box coordinates.

1) ITERATIVE, DISCRETE BOUNDING BOX ADJUSTMENTS
When iterative, discrete bounding box adjustments are
operated, the agent’s action determines the direction
(left/right/top/down) of the bounding box shift and/or the
scale factor (enlarge/shrink). Actions are applied to the
bounding box on the same frame until a stop action is taken.

The methods in [90]–[93] adopt DQL [22] to train the
agent, while [94]–[97] use the REINFORCE algorithm [76]
(D-PG). The methods take all advantage of test-time updates

of the model with the only exception of [92], [93], [97] that
use an ad-hoc pre-trained tracking model.

In [90], the method, which we name BBCorrection, adapts
the work in [9] for object detection to visual tracking. Given
an initial detection of the target, a pre-trained deep network
(derived from the VGG-16 model [98]) is used to extract
features from the bounding box. These features, together with
a memory of the last 10 actions, represent the state; the agent
is trained to shift and scale the bounding box to the target
location by multiple interactions at a pixel level; Whenever
the agent gets stacked into a local optimum (i.e., the agent
selects pairs of actions canceling each other), the bounding
box is randomly moved.

The work in [91], RDNet, adopts two agents: a movement
and a scaling agent, both implemented as a Siamese network
receiving in input the current state and a search region. The
agents are individually trained by DDQN [74]. Motivated
by the way humans would accomplish the same task, first,
the bounding box is moved to center the target by a sequence
of shifting actions of themovement agent. Later, the bounding
box is re-scaled by the scaling agent. The movement agent is
rewarded based on the improvement of the Euclidean distance
before and after the selected action is performed. Differently
from other approaches using the Siamese network, where
inputs are cropped from different frames, RDNet takes inputs
from the current frame.

The method in [93], DADRL, takes advantage of the coop-
eration of two different agents for deformable face tracking:
the agent is implemented by a CNN and aims at predicting
horizontal/vertical shifts and scale changes to the current
bounding box for centering the target face. The alignment
agent estimates the face landmarks and is based on the hour-
glass network [99] for pose estimation. It takes the decision
of continuing to adjust the face region or stopping. The
landmark detection accuracy is used as a reward.

The work TSAS [92] uses two networks in cascade to
predict how to shift the target bounding box. The first network
predicts the best discrete action to take to locate the target;
this network is trained in a supervised way. The second
network models a Q-function and is trained by RL to assess
the action value. Finally, a regressor is used to refine the
estimation.

In [94], [100], an action-decision network (ADNet) is used
to predict the action probability distribution. The state is
represented by the cropped target image and the history of the
last 10 selected actions represented by a one-hot encoding.
The policy network is pre-trained in a supervised way. The
network also estimates a confidence score, which is used to
decide when the tracking has to be re-initialized. At test time,
a supervised adaptation of the latest fully connected layers
is performed to make the model more robust to appearance
changes. ADNet was later improved in IADNet [95]. At train-
ing time, the action is sampled from the estimated action
distribution to ensure higher exploration. During training,
a multi-domain learning strategy [16] is used. An online
adaptive update strategy based on meta-learning is used to

VOLUME 9, 2021 120887

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

estimate the most appropriate model parameters such that the
parameters are closer to the optimal ones.

Thework in [96] proposes a hierarchical tracker composed
of an ad-hoc pre-trained motion model (CNN and LSTM),
and an appearance model based on HCF [54] that is updated
at test time. After a sequence of actions, the resulting target
image is processed by the HCF to get a coarse-to-fine tar-
get verification. The peak in the correlation map is chosen
as the new target location. In this work, only the HCF is
adapted at test time. In their ablation study, the authors show
that the RL-based motion model contributes to the tracking
performance.

In [97], a set of single-target trackers are used (Mot-DRL)
to iteratively adjust the target bounding box. The state is
represented by a cropped image and the last 10 selected
actions.

2) CONTINUOUS-VALUE BOUNDING BOX ADJUSTMENTS
The works in [101]–[104] adopt the Actor-Critic framework
to handle continuous-value action prediction, while [105],
[106] adopt the REINFORCE algorithm [76]. Among the
former works, only the methods in [101], [102], [104] take
advantage of test-time adaptation of the model.

In the Actor-Critic Tracker (ACT) [101] and in
TD3T [102], the state is defined as the cropped target image
based on the bounding box detected at the previous frame.
The actor-network provides continuous actions to update
the past bounding box to the new target location in the
current frame. The critic-network takes in input the state
and the selected action and provides the Q-values and a
verification score representing the decision reliability. During
tracking, the actor is fine-tuned in a supervised way through
the annotation in the first frame. The critic is updated any
10 frames based on the collected target detections. The
whole framework is trained by DDPG [78]. In TD3T [102],
the policy is learned by means of the TD3 algorithm [79],
which aims at getting more accurate Q-values estimation by
using double Q-learning. Hence, during training, two critic
networks assess the actor’s decisions; at test time, one of the
two critics is used to estimate the bounding box confidence.
The training and updating strategies in TD3T are similar to
those of ACT [101].

In [104], a motion-aware RL agent guides the particle
sampling within the particle filter framework (PF-DRL).
In this sense, the work revisits the MDNet model [16], which
tracks adaptively the target by evaluating a number of samples
drawn around the past target location. The motion-aware
network takes in input the cropped target image and the action
history and provides in output a continuous action represent-
ing parameters to estimate the mean and covariance matrix of
a Gaussian distribution to be used to sample the particles. The
critic network estimates the Q-value of the selected action.
The model is trained by DDPG [78].

Also A3CT in [103] proposes to train the RL agent under
the guidance of an expert tracker. A Siamese network and a
LSTM fed the actor and the critic, which estimate continuous

value actions to update the target bounding box and the
V-function respectively. The expert tracker (SiamFC [19])
performs tracking by generating a sequence of states (esti-
mated target locations) and actions (changes to the target
locations). The agent learns to behave better than the expert.
As a variant, in A3CTD the tracker takes advantage of the
expert tracker also at test time. The interesting aspect of this
work is that the rewards are computed independently of the
ground truth.

In [105], a DRL-based Tracking algorithm (DRLT) adopt-
ing a recurrent CNN is proposed. Given in input the whole
frame, the CNN extracts a feature representation. Such rep-
resentation is augmented with the target location and fed in
input to the RNN. The RNN approximates the policy function
and predicts the new target location. The main advantages of
this approach are: the tracker can use contextual information
since the whole frame is processed; the tracker predicts the
current bounding box without any iterative procedure; no
action history is needed since dynamics are embedded in
the RNN. However, training RNN requires a large dataset.

The work in [106] proposes JDTracker, a policy-based
jump-diffusion process for visual tracking. Stochastic
jump-diffusion processes are used to sample a probabilistic
distribution over a mixture of subspaces of varying dimen-
sions. The jump allows moving from a subspace to another.
In JDTracker, the state decomposes into a discrete sub-
space encoding the target visibility (target visible, occluded,
or invisible), and a continuous subspace encoding the target
location. The method learns two sub-policies (two CNNs),
the first designed on the discrete subspace and the other on
the continuous sub-space. Each CNN estimates a distribution
probability over the discrete actions (i.e., switching into a
new discrete state) or the continuous value changes to the
bounding box (shift and scale values). For discrete actions,
the reward is 1 if the visibility state equals the ground-
truth, 0 otherwise. Training is performed by a variant of the
REINFORCE algorithm [76].

3) CAMERA PARAMETERS ADJUSTMENTS
There are also works [107], [108] on active tracking
that model actions as continuous value camera parameters
changes. They both employ the actor-critic framework and
do not adapt the model at test time.

In [107], [109], the tracker (Active-DRL) consists of a
CNN, a LSTM, and an actor-critic network to derive the
agent’s action and estimate the state value (V-function). Given
the location and orientation of the target on the image plane,
the reward function is designed such that its maximum value
is achieved when the target stands in front of the camera
within a predefined distance and no rotation intervenes. The
method is tested only in a virtual environment, and the model
is trained from scratch without any supervision.

Virtual environments are also used in Asymmetric Duel-
ing Visual Active Tracking (AD-Vat) [108], [110], which
proposes an adversarial RL method involving two agents:
the tracker and the target agents playing the role of

120888 VOLUME 9, 2021

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

opponents during the training. Thanks to the adopted adver-
sarial learning strategy, the target attempts to find the weak-
ness of the tracker, and the tracker becomes stronger. The
reward function is 0 near range (when target location and
tracker estimate are close) and non zero otherwise to penal-
ize the target agent when it runs too far from the tracker
estimation.

B. DECIDING THE TRACKING STRATEGY
In this section, we discuss works where the agent decides the
tracking hyper-parameters, the search region where to locate
the target, or the tracker state transition. The latter may imply
reinitializing, updating or deleting the tracker.

1) TRACKING HYPER-PARAMETERS ADJUSTMENTS
In [111] (HP-Siam), it is noted that hyper-parameters, such as
scale step, scale penalty, scale learning rate, window weight,
and template learning rate, also play a crucial role in tracking
processes, and dynamically changing such hyper-parameters
at a frame level may lead to a great improvement of the track-
ing results. Ground-truth values of hyper-parameters are not
available. A policy network estimates the hyper-parameter
values, and another network assesses the Q-function value.
Learning is accelerated by using NAF [75]. The work is
extended in [112] (HP-BACF) where the proposed net-
work is combined with a real-time correlation filter-based
tracker [113].

A hybrid approach that allows estimating both the new
target location and the tracking hyper-parameters is proposed
in [114], DP-Siam. A Siamese network produces a heatmap
representing the per-pixel likelihood of finding the target in
the search area. The agent network predicts the new target
position in the search area. Such continuous action produces
a state change represented as a novel target bounding box.
The environment network approximates the Q-function and
estimates the Q-value of the new state and a confidence value.
The Q-network also provides the tracking hyper-parameters
(scale penalty, scale learning rate, window weight, template
learning rate). Learning is done by a modified Q-learning
approach that uses alternate training of the agent and envi-
ronment networks.

2) TRACKER STATE TRANSITION
Methods in [23], [115] learn a policy to decide when to track
the target/reinitialize the tracking, and if to update the target
appearance model. The former method is based on DQL [22],
the latter is based on the AC framework. Both the methods
take advantage of model updates at test time.

In [23], P-Track, a memory of past actions (action history)
is maintained and processed by the model. Training of the
network is interactive, with manually annotated frames in
strides of 50. The base tracker is a fully convolutional network
tracker (FCNT) [116] whose parameters are adapted at test
time, while the Q-function is approximated by a small net-
work initialized by heuristically guided Q-learning through
the minimization of a supervised loss function.

In the method [115], DRL with iterative shift (DRL-IS),
three networks are used: the prediction network, the actor, and
the critic. These networks share all the convolutional layers.
Appearance features of the target are explicitly maintained
and online updated. The prediction network iteratively adjusts
the target location (shifting and scaling the target bounding
box). The actor-network makes decisions on the tracking sta-
tus, whether or not to update the target representation and the
prediction network, or even restart tracking. The critic returns
a value assessing the state-action pair. The prediction net-
work is pre-trained in an end-to-end manner. The actor-critic
model is trained considering different rewards based on the
selected action. Finally, in [117], a decision controller (DC)
implemented by a Siamese network to choose between two
trackers’ results is proposed. The controller, trained by REIN-
FORCE [76], takes in input the patches corresponding to the
trackers’ predictions. The reward is the difference between
the IoU of the selected prediction and the IoU of the other one.
Another decision controller is proposed whose goal is that
of deciding whether to track the target (by Siamese-FC [19])
or to detect it (by SSD [4]), namely to re-initialize the target
tracker whenever drifting occurs.

3) SEARCH AREA ADJUSTMENTS
While works in [118], [119] aim at adjusting the search
area through discrete shift/scale actions, the work in [120]
proposes a data augmentation technique whose goal is deter-
mining the area to occlude to generate hard samples. The
methods in [118], [120] adopt the DQL framework [22],
while CRAC [119] uses the actor-critic one coupled with
GAN [46]. This latter method takes advantage of model
updating at test-time.
G&M [118] proposes to estimate the optimal search area

to feed into a Siamese network-based tracker. Two modules
are available: the matching and the guessing modules. The
first one is a Siamese network that provides the heatmap of
the new target location by cross-correlation. The guessing
module provides a rough estimation of the target location.
The agent has to decide how to move the bounding box such
that the matching module will be able to detect the target
within it.
CRAC [119] has been designed for unsupervised vehicle

tracking in drone videos. The actor takes in input observations
from an image and the action history. It determines the win-
dow size of the search area (the contextual region around the
target) by selecting actions such as enlarge, shrink, or termi-
nate. The critic assesses the action-state pair according to the
tracking score of the newly generated images. The actor-critic
model is trained by A3C [71] on the ground-view dataset.

Differently from the above approaches, SINT++ in [120]
couples reinforcement and adversarial learning to augment
the training set with hard positive samples and improve the
robustness of the SINT algorithm [18]. For each video, a vari-
ational autoencoder is trained and used to generate samples
of the target that did not occur in training data. A hard
positive transformation network allows adding occlusions on

VOLUME 9, 2021 120889

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

the target objects by using image patches extracted from the
background. The latter module is trained by DQL [22], and
the agent’s actions entail the movements of the patch over the
target.

C. DECIDING APPEARANCE MODEL SELECTION/UPDATE
The agent can also make decisions concerning the target
appearance model management. In particular, it can select the
appearance model to use from a pool of available models, can
decide whether to update or not the appearance model or can
decide which tracking result to consider when a pool of expert
trackers is available. All these methods use discrete actions.
Whenever the appearance model is represented in terms of
CF [38], then the methods take advantage of the appearance
model update at test time.

The EArly Stopping Tracker (EAST) [121], aims at speed-
ing up deep Siamese trackers in an adaptive way by choosing
the output of the optimal layer to use for tracking. It is based
on the intuition that complex scenarios may require deeper
features, while simpler scenarios may need the output of the
first layer. The agent decides whether using the representation
of the current layer or moving to the next one. The maximal
number of iterations depends on the network depth, which
makes the iteration number a-priori limited by the architec-
ture structure. The method is based on DQL [22]. Somehow
related is the work in [122] (TS-Dist), which aims at distilling
a small, fast Siamese tracker from a large one by transfer-
ring knowledge from a teacher to multiple student networks.
The first module extracts a reduced network representing the
‘‘dull’’ student and learns a policy to sequentially shrink the
Siamese network layers. The reward function measures
the compression rate and tracking accuracy. Learning is based
on policy gradient methods.

The works in [123], [124] adopt CF as target appearance
models, the work in [125] is concerned with the choice of
the best heatmap to use in tracking, and [126] represents the
target appearance in terms of template images.

In [124], MT-Exp, a DQL-based expert selects the best
tracker to use from a pool of CFs by taking their response
maps in input to estimate the reliability of each tracker (value
function). The network is pre-trained in a supervised way by
letting the network regress the IoU on a single heatmap. Then,
RL is used to refine the network parameters.

In [123] (CF-AC), it is noted that older CFs may yield
better results and it is proposed to maintain several past CFs.
It uses the actor-critic framework to learn a policy for select-
ing the optimal appearance model (i.e., CF) to locate the
target. The policy network takes in input all response maps
and provides a beta probability distribution over all available
filters. This differs from MT-Exp [124], where the state is
the response map of a single CF and multiple evaluations are
required. In CF-AC, the critic is used to assess the policy
decision. The policy network is trained by PPO [81]. The
pool of CFs includes the initial (never updated) CF, several
updated CFs, and an accumulated (always updated) CF.

In RDT [125], policy gradient is used to select the target
template from a pool of past observations. The matching
between the target template and the new frame is established
by a Siamese network, which produces a heatmap. The agent
has to decide, for each template, if the estimated heatmap is
reliable or no. The most reliable heatmap is used to locate the
target. In practice, themodel helps tomaintain an updated and
effective appearance model represented in terms of ensemble
of templates.

The method in [126] (VOS) considers the problem of video
object tracking and segmentation. Given a pool of candi-
date target detection obtained through an instance segmen-
tation network, such as YOLACT [127] or Mask R-CNN [5],
the AC-based agent has to decide whether to update or not
the target template. The choice of which matching strategy to
use between a fast one (IoU-based) and a slow but accurate
one (appearance-based) is taken based on the agent’s action
history.

VI. QUANTITATIVE METHOD COMPARISON
We compare DRL-based visual-tracking methods by con-
sidering their reported results on publicly available datasets
regarding single-object tracking.

In table 1, we group the papers based on the catego-
rization in Fig. 6, and, for each method, we report the
adoptedDRL-method (DQL,D-PG,AC) described in Sec.IV,
the adopted training dataset, and the achieved results on
public benchmarks.

A. DATASETS AND PERFORMANCE MEASUREMENTS
Here, we provide a brief overview of the most adopted pub-
lic benchmarks for single object tracking. We also summa-
rize the experimental protocols suggested when using these
benchmarks.

1) PUBLIC BENCHMARKS
Two main benchmarks are adopted to validate tracking algo-
rithms: the Object Tracking benchmark (OTB-2013) [132],
and the Visual Object Tracking (VOT) dataset [133] of which
several extensions/variants are provided each year, being the
dataset part of an annual challenge.

The OTB-2013 includes 50 fully annotated videos char-
acterized by several attributes (illumination variation, scale
variation, occlusion, motion blur, etc.). The benchmark was
expanded in [134] to include further 50 annotated trajec-
tories (some videos have more than one annotated object).
The 100 annotated trajectories are indicated with the name
OTB-100; a subset of such trajectories, named OTB-50,
includes the more challenging videos and differs from the set
of videos in OTB-2013.

The VOT challenges [133] started in 2013 and the publicly
available dataset grew over time (25 videos for short-term
tracking in 2014, 60 since 2015, additional 35 sequences
for long-term tracking in 2018). Based on the final reports
of each competition, we have found that: VOT 2016 used
the same videos as in VOT 2015 but with a more accurate

120890 VOLUME 9, 2021

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

TABLE 1. Comparison on OTB-13/15 and VOT-16/18. The column Goal reports the kind of problem solved by the method (BBOX = target Bounding
Box prediction, TS = Tracking Strategy, App = Appearance model selection/update) as presented in Sec. V. The column Method reports the algorithm
category (AC = Actor-Critic, D-PG = Deep Policy Gradient, DQL = Deep Q-Learning, DT = Deep Tracker, ML = Meta-learning, AL = Adversarial Learning,
CF = Correlation Filter). DT and CF methods are reported as baseline methods and grouped as well based on the goal pursued by the tracker.
The column Trained on reports the training dataset. AUC stands for area under the curve, P for precision, EAO for expected average overlap,
FPS is the frame per second, and GPU indicates the GPU architecture reported in the published paper. In bold are highlighted
the best-achieved results per column. *Results reported in [128].**All GPUs are Nvidia. N.A. stands for not available.

annotation; VOT 2017 replaced the least challenging videos
in VOT 2016 with newer sequences and further improved
the annotation; videos/annotations for short-term tracking in
VOT 2018/ 2019 are the same as in 2017. In the following,
we summarize the results on VOT-16 and VOT-18.

Other more recent benchmarks could have been used to
assess DRL-based methods, such as LaSOT [135], Track-
ingNet [136], TC [137], and GOT-10k [138]. Such bench-
marks would have allowed validating the methods on long
video sequences. The analysis of the reviewed papers
revealed that G&M [118] is validated on TrackingNet and
LaSot, A3CTD [103] is validated on LaSOT and Got-10k,
DRL-IS [115], and PF-DRL [104] are validated on TC. Since
these evaluation results are too sparse, they do not allow draw-
ing conclusions on the effectiveness of DRL-based trackers in
long videos.

For training purposes, ImageNet videos (ILSCRC) [139],
ALOV300+ [140] and VOT are often used. As reported
in [18], 12 sequences in the ALOV300++ overlap with
the OTB dataset, and overlapping sequences are also in
VOT-16. Most of the reviewed papers clearly claim to have
excluded the overlapping sequences from the training
set [52], [94]–[96], [115], [120]). Other adopted datasets for
training purposes are reported in Table 1.

2) EXPERIMENTAL PROTOCOLS
OTB and VOT benchmarks have different evaluation pro-
tocols. For the mathematical formulation of the evaluation

metrics, we refer the reader to the papers [132]–[134]. Here,
we provide a high-level description of the methodology to use
for assessing tracking algorithms on these two benchmarks.

In OTB, each tracker starts from an initial annotated
bounding box and runs till the end of the video without
re-initialization in case of tracking failure. This methodology
is referred to as one-pass evaluation (OPE). Other methodolo-
gies (temporal robustness evaluation and spatial robustness
evaluation) are proposed in [132] but rarely adopted in prac-
tice. In VOT, whenever a tracking failure occurs, the tracker
is re-initialized.

In the OTB benchmark, two performance measures are
suggested: IoU to measure tracking accuracy, and RMSE of
the target center location to measure the tracker precision.
The two measures are used to draw the success and precision
plots respectively. The success plot represents the percentage
of frames with IoU > κ for varying thresholds κ ∈ [0, 1].
The area under the curve (AUC) of the success plot serves to
rank the algorithms. In [141], it is proved that this AUC is in
fact the average overlap (AO) over the sequence.

The precision plot shows the percentage of frames in which
the target distance to the ground-truth location is below a
varying threshold. The precision score with a threshold equals
20 pixels is used to rank the trackers.

In VOT, stochastic trackers are run 15 times on
each sequence. Three measurements are computed [133]:
the expected average overlap (EAO), accuracy (A), and
robustness (R). Robustness metric evaluates the tracking

VOLUME 9, 2021 120891

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

failure rate; a failure occurs when the IoU is not greater
than 0. In such cases, the tracker is re-initialized 5 frames
after the failure by using the ground-truth, and 10 frames
after the re-initialization are ignored when measuring the
performances. The accuracy metric measures the AO over all
successfully tracked frames. Some works report the accuracy
and robustness raw scores, while others report the average
ranking of the method over a set of trackers. Due to these
discrepancies, we only report the EAO values.

EAO estimates the tracker accuracy by taking into account
how long the tracker can successfully follow the target inde-
pendently than the length of the video sequence [133]. Based
on the probability density function over the sequence lengths
in the dataset (computed by kernel density estimate), two
length boundaries, ti and tf , are found such that the integral
of the pdf within this range equals 0.5. Since the tracker is
reset in case of failure, the tracking sequence is split into
fragments (based on the frames where a failure has been
detected). Fragments with a length below the video length N
and not terminating in a failure are discarded. The remain-
ing fragments are padded with zeros to have length N . The
fragments are then per-frame averaged and the per-sequence
average in the range [ti, tf] yields to the EAO.

Despite both OTB and VOT benchmarks suggest to per-
form attribute-based analysis (i.e. measuring performance
in case of illumination changes, occlusions, etc.), only very
few DRL-based papers present this analysis (namely [95],
[101], [111], [112], [123]). For this reason, an attribute-based
comparison of the trackers cannot be done.

B. COMPARING DRL-BASED TRACKING APPROACHES
Table 1 summarizes the results of the selected papers on the
OTB and VOT benchmarks. It also reports the frame rate
of the algorithms and the specification of the used GPU.
Whenever the paper indicated that the experiments were
run on OTB-2015, we assumed the authors used OTB-100.
Where the use of VOT 2017 was reported, we have indicated
VOT-18 since the two datasets are the same as reported on the
challenge website.

Papers not included in this table, such as [90], [93],
[106]–[110], [142], are not comparable because experiments
are run on different datasets or in simulation. Whenever
results of variants of the algorithm are reported, we con-
sider the best-achieved results unless the modification led to
high differences in the scores. For the OTB dataset, we only
include papers reporting both the AUC and precision P values
(hence, we excluded [23], [121], [125]). The table does not
report VOT-15 where only 3 of the papers have reported
results: DP-Siam [114], HP [111], and EAST [121] whose
EAO scores are 0.39, 0.242, and 0.34 respectively.

The method DRLT [105] is not included in the table
because the training procedure largely differs from that of the
other methods. DRLT has been trained/tested on 30 videos
from the OTB-100 in cross-validation. Values of AUC,
precision, and fps are 0.543, 0.635, and 270 respectively.

TS-Dist [122] is not included because DRL is only used to
find the student architecture but not to transfer knowledge.

In the experiments on the OTB benchmark, the work
TD3T [102] reports that the threshold for the success of the
tracker is 0.5 but the OTB evaluation protocol requires that
the AO is reported.

Wefirst compareDRL-based trackers independently on the
pursued goal. Then we compare methods within the same cat-
egory. By examining the table, especially the more complete
results reported on the OTB-100, the best accuracy values
are achieved by MT-Exp [124] and DP-Siam [114]. How-
ever, on the VOT-18 dataset, DP-Siam achieves much higher
EAO than the MT-Exp method [124], which might indicate a
lower number of tracking failures. Overall DP-Siam seems to
offer a good trade-off between accuracy and tracking speed.
MT-Exp [124] reports very good results on OTB but does
not specify the achieved frame rate. Looking at the results,
there is no clear advantage in preferring a deep model over
another. DP-Siam [114] adopts a Siamese network as the
base tracker and is not adapted at test time. On the contrary,
MT-Exp [124] uses a CNN whose inputs are computed by
re-training a set of CFs at test time. Both the methods take
advantage of DQL algorithms [22], as well as RDNet [91]
that achieves the highest results on the OTB-50 at the cost
of a lower frame rate. Good results are achieved on the
OTB-50/100 by D-PG and AC methods, namely ADNet [94]
and DRL-IS [115], both online adapted.

Among the DRL-based approaches aiming at predicting
the target bounding box, the most performant method on
the OTB-13 is TSAS [92], on OTB-50 is the Hierarchi-
cal Tracker [96], and on OTB-100 are RDNET [91] and
DP-Siam [114].

The best performing method among those dealing with the
tracking strategy, on OTB-100, is HP-BACF [112], which
learns the tracking hyper-parameters and adopt also CFs.
On the VOT benchmark, the best results are achieved
by DC [117].

As for the methods dealing with the target appearance
selection/updating, the best results on OTB-100 are achieved
by MT-Exp [124].

If we compare the results across categories, methods deal-
ing with the target appearance seem to perform better and
are competitive or superior to those dealing with the target
bounding box prediction. On the OTB benchmark, methods
dealing with the tracking strategy are the ones achieving the
worst results. However, this is not confirmed by the results
achieved on the VOT benchmark.

C. COMPARISON TO THE STATE-OF-THE-ART
Finally, we also compare to deep tracking methods trained in
a supervised way. We have included in the table the widely
known MDNet [16] as a baseline and very recent works end-
to-end trainable or adopting discriminative correlation filters
(CF), adversarial learning, and meta-learning.

As the table shows, on OTB-100 the majority of
DRL-based trackers perform worst than MDNet. However,

120892 VOLUME 9, 2021

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

TABLE 2. Theoretical comparison of DRL-based trackers grouped based on the adopted DRL algorithm. The column DRL specifies the algorithm category
(DQL, D-PG and AC). The column Decisions describes the action space. The column D/C stands for Discrete or Continuous-values actions. AH stands for
Action History. RNN and Siam indicate the adoption of RNN or Siamese network, respectively. The column SL refers to the possibility of pre-training the
policy by Supervised Learning. The column OU indicates that, at test time, the model parameters or the CF are updated.CF stands for Correlation Filter.
Finally, the column Reward describes the adopted reward function.

this is true also for several recent baseline methods using
supervised learning (SL). The method achieving the highest
tracking results is a CF-based, namely GFS-DCF [128]. The
best DRL-based trackers MT-Exp [124] and DP-Siam [114]
achieve slightly inferior results with respect to GFS-DCF but
comparable to VITAL [56].

Comparing the DRL-methods dealing with the bounding
box prediction with the corresponding baseline methods on
the OTB-100, there are DRL-methods [91], [104], [114] that
are competitive with deep trackers.

VII. DISCUSSION
Table 2 summarizes the main characteristics of the analyzed
DRL-based tracking approaches. The column DRL reports
the type of DRL algorithm used to train the network, namely
DQL, D-PG, and AC. The column Decisions describes the
kind of actions that the agent has to take while the col-
umn D/C stands for Discrete or Continuous-values actions.
AH stands for Action History and highlights the models
taking in input the sequence of past actions selected by the
agent.RNN indicates the adoption of recurrent neural network
(such as LSTM) while Siam indicates that the model is taking
advantage of a Siamese network. The column SL refers to
Supervised Learning. In this case, we highlight the fact that
the policy has been pre-trained in a supervised way with a
set of actions derived from the ground truth. The column
OU highlights the works in which the model is updated

at test time (based on the target detection collected dur-
ing tracking, hence by a form of semi-supervised learning).
CF stands for Correlation Filter and refers to the fact
that CFs are employed for tracking purposes. Works employ-
ing CF are online updated. Finally, the column Reward
describes the adopted reward function.

Learning a policy with a large state space is challenging.
Most of the approaches have highlighted slow convergence
and/or stability issues. Such problems have in general been
addressed by introducing supervised pre-training strategies,
data augmentation techniques, ad-hoc design of the reward
function, or increased size of the training data. In the follow-
ing, we analyze the above-mentioned issues and techniques.

A. STATE SPACE
All models take in input images or heatmaps. The number
of inputs can vary depending on the adopted architecture.
Images are generally resized to adapt to the input size of the
adopted (generally pre-trained) convolutional network.

When a two-branches network is used (such as a Siamese
network), two images are provided in input: a template of
the target and a search area. To account for large appear-
ance changes and tracking failures, re-detection or validation
procedures are included in the model. In actor-critic models,
such procedures are implemented by using the critic to score
candidate target bounding boxes (as in [101], [102]).

Methods selecting CFs [123], [124] use two different
approaches. Reference [124] evaluates a heatmap at a time

VOLUME 9, 2021 120893

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

and can maintain an unlimited number of CFs. The agent
decides if the heatmap is reliable or no. On the contrary, [123]
takes in input a set of heatmaps of fixed size. This limits the
number of CFs to be used to perform tracking but allows the
agent to make a decision by jointly considering all available
heatmaps.

B. ACTION SPACE AND HISTORY
As shown in Table 2, most of the approaches adopt discrete
actions (between 4 and roughly 11). This choice limits the
complexity of the model. Works focusing on continuous
actions to modify the target bounding box have adopted mod-
els trained by DDPG [78] (as in [101], [104]) or its variant
TD3 (in [102]) to train a deterministic policy. Works such
as [105], [106] use instead the REINFORCE algorithm [76]
while [103], [107] adopt A3C [71]. The only method using
DQL [22] is [114] where the network is used to also predict
the tracking hyper-parameters. An elegant approach is the one
proposed in [111] where a probability distribution over the
action is trained by NAF [75].

As pointed out in [90], when discrete actions are used to
modify iteratively the target bounding box, the agent can be
trapped in a local optimum and it starts to select sequentially
actions that cancel each other (such as move up and down).
Often, more than an initial bounding box/candidate in works
such as [91], [92], [114], [115], [126]. Methods in [23], [90],
[94], [95], [97], [104], [106], [118], [119], [121] prefer to pro-
vide in input to the network the history of the selected actions.
This implementation choice has the effect of stabilizing the
learning procedure limiting the problem of entering into an
action selection cycle.

Methods that do not provide in input the action history, tend
to provide in input the past target locations (as in [125]) or to
include in the model a recurrent neural network (as in [93],
[96], [103], [105], [107], [108]).

It is worth noting that all methods using a discrete set
of actions to modify the target bounding box limit the
shifts/scaling to a number of pixels computed in proportion
to the bounding box size. Hence, the accuracy reachable by
these methods is implicitly bounded. The only exception is
the BBCorrection algorithm [90] where the box is moved
of one pixel along with the vertical/horizontal directions and
hence accuracy can be reached at a pixel-level at the cost of
an increased number of iterations.

C. DESIGN OF THE REWARD FUNCTION
Often, agents are rewarded with the same metric used
to assess the tracking performance, namely by IoU of
the tracking results and the ground truth. In works such
as [111], [124], where tracking hyper-parameters and model
appearance selection are to be decided, the annotated bound-
ing boxes are only indirectly linked with the action meaning.

The last column in Table 2 refers to the reward function
adopted in each paper. The reward is a function f (·) of the IoU
of the currently estimated bounding box and the ground-truth.

In its most general form, the function is defined as follows:

f (st , at , gt) =

{
α, if IoU (st , gt) > τ

−α, else
(10)

where τ is a threshold (often in the range 0.65 - 0.9) and α is
a constant value, often 1. In some works, such as [90], [101],
[114], [115], [121], the1IoU is used, meaning that the agent
is rewarded based on the improvement of the bounding box
with respect to that at the previous step (this is indeed used
in papers where the bounding box is iteratively estimated).
In general, the use of IoU versus 1IoU should depend on
the value function that has to be learned. If a V-function is
learned, then we are interested in rewarding the agent based
on the final state (and hence IoU should be used). If instead a
Q-function is learned, then the agent should be rewarded for
taking action a while in state s, and hence the agent should
be positively rewarded if the new state is more convenient
than the former one (and hence1IoU should be used). IoU is
a good measure to compare the extent of the bounding box.
For the coordinates of the center of the bounding box, or more
generally, the coordinates of the points defining the target or
the camera parameters required to locate the target, a better
measure could be based on the Euclidean distance. This is
done in [91], [107]. Absolute difference D is used in [105].
In [119], [120], a function of the improvement of the tracking
score is used, while in [106], since the agent has to make
decisions about the visibility of the target, the reward depends
on the visibility of the target derived from the ground-truth
information.

Overall, the reward is in general assuming a value in a
discrete set. However, the use of continuous value reward has
been investigated in [92], [93], [95], [96], [102], [103], [105],
[107], [108], [111], [117], [118], [123], [126].

D. PRE-TRAINING OF THE POLICY
There are a number of works [23], [92]–[95], [101], [102],
[104], [106], [111], [124] that overcome convergence issues
in DRL by adopting a supervised pre-training of the network,
namely by providing the agent with the actions derived from
the ground truth.

In some works [115], [117]–[120], [125], despite a super-
vised pre-training is not directly employed, still, the model
takes advantage of trackers trained in a supervised way.
In other cases [101], [102], [104], an expert is used to guide
the learning process. Somewhat different is the case of [103]
where imitation learning is implemented and an external
pre-trained tracker is used such that the RL agent learns to
perform better than the expert (which may also fail).

Convergence issues might be due to an ineffective policy
initialization. It is of interest to note that, in [23], a form
of heuristically guided Q-learning is adopted to initialize
the policy. In particular, the Q-network is pre-trained in a
supervised way by considering not only the reward for the
optimal action derived by the ground truth but also assuming
that, starting from the next state, the agent will only select

120894 VOLUME 9, 2021

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

optimal actions. This permits the definition of a target policy
that, differently from the original DQL approach in [22],
is truly optimal.

E. TRAINING STRATEGY
Most of the approaches, especially those adopting DQL,
employ a memory buffer to store the agent’s past experience.
The memory buffer size in experience replay needs to be
carefully tuned. With a small memory buffer, there is a high
risk of over-fitting on recent data. With a large replay buffer,
it is less likely to sample correlated elements; on the other
hand, a large buffer can slow training and can hurt the learning
process [143].

During learning, mini-batches are sampled from the mem-
ory buffer. As pointed out in [101], imbalanced batches can
hurt the learning process. In [101], annotations are used to
provide more guidance during the learning process.

F. TRACKER INITIALIZATION AND UPDATING
In most of the analyzed approaches, part of the network
is devoted to extracting appearance features of the target,
while another part is used to implement the policy. In many
approaches, fine-tuning is used to adapt the model to the
target appearance by using bounding boxes from the first
frame. At test time, updates are also required when using CFs.

As shown in Table 2, most of the approaches do not require
any updating at test time or special initialization, apart from
the bounding box of the first frame. The methods taking
advantage of some form of updating at test time are [96],
[112], [123], [124] to retrain the CFs, and [90]–[92], [94],
[95], [101], [102], [104], [115], [119] to retrain part of the
network/policy.

We highlight here an interesting feature of the latter meth-
ods. While [90], [91], [115] perform the policy updating
and/or fine-tuning on the first frame by using the same DRL
algorithm used at training time, the methods in [94], [95],
[101], [102], [104] claim to use a supervised learning strategy
to update the policy network.

G. ON THE ADOPTED DRL ALGORITHM
In recent years, the evolution of DRL algorithms has been
very fast, especially for policy gradient algorithms. Most of
the DRL-based tracking algorithms are based on DQL, and
only [91] compares DRL approaches (Dueling DQN [144] vs
DQN [22]), but no comparison among DQL, AC, and D-PG
has been presented yet.

Whenever drifting occurs, re-detection or validation pro-
cedures need to be devised. In this sense, actor-critic models
are preferable. Indeed, the critic is used to guide the training
process but, during tracking, it can also be used to validate
the agent’s decisions. Often, when the action-value estimated
by the critic is below a threshold or negative, a re-detection
procedure where multiple target candidates are scored by the
critic is used (as in [101], [102]).

In conclusion, from a theoretical point of view, AC meth-
ods might be preferable. However, as shown in Table 1,

regardless of the actions/goals of the tracking algorithm
(reported in the column Decisions of Table 2), the best per-
forming DRL-based tracking algorithms are MT-Exp [124]
end DP-Siam [114], both based on DQL. We note that Hier-
archical Tracker [96] and DRL-IS [115], based on D-PG
and AC, respectively, achieve results comparable to the
state-of-the-art.

VIII. CHALLENGES, LIMITATIONS AND FUTURE
DIRECTIONS
In this section, we discuss some characteristics of the sur-
veyed papers that may be improved in future work, and
that should be considered when designing novel tracking
approaches based on DRL.

A. STATE AND ACTION SPACES
In most of the surveyed works aiming at finding the target
location, the search area is in general enlarged to facilitate
the target detection. In such works, it remains unclear how
agents learn to deal with occlusions, and indeed re-detection
strategies are often designed to track the target through the
occlusion, for instance through particle filtering. Under this
point of view, the approach in [105] is interesting in that
it processes the whole frame. Hence the agent may have
more chances to reacquire the target when the occlusion ends.
Instead, the method in [91] is interesting in that it takes in
input a search area and a cropped target image. The latter is
not a template from the previous frame. Instead, search area
and target images are obtained from the same frame. The goal
is that of modifying the bounding box used to crop the target
image by also considering the contextual information in the
search area image. Somehow, this task may take advantage of
the target class (i.e. person, car,. . .), especially if pre-trained
networks (such as VGG) are adopted.

Considering that the tracker may need some target appear-
ance information, and has to know where to search the target
and which is the current state, we find it surprising that a
three-branches network receiving such inputs to train the
policy has not been proposed yet. This can be an interesting
future direction to investigate.

The most annoying issue in DRL-based tracking
approaches aiming at locating the target through a sequence
of discrete actions is the action cycling, which happens
when actions canceling each other are iteratively selected.
A possible research direction might be the design of discrete
actions that do not cancel each other. This would limit the
cycling issue but not certainly solve it. By following an idea
similar to that in [91], it might be possible to devise several
policies to select the actions. The policies might be designed
to be used in cascade ([91]) or to select multiple actions at
once, one from each policy. In both cases, if each policy can
model a subset of canceling actions (such as move up, down),
then the cycling issue can be limited. Moreover, a lower
number of iterations may be required to locate the target.

The existence of the cycling issue suggests that the agent
may benefit from knowing what attempts it has already made

VOLUME 9, 2021 120895

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

to correctly learn what decision to make. And indeed, several
approaches include the action history in the network input.
It is possible to speculate that knowing the progress asso-
ciated with the past attempts may help the agent to select
optimal new actions. However, at the test time, the reward
is unavailable and more investigations to provide such kind
of feedback to the agent are suggested. While the above
argument is easy to understand when the agent decides how to
iteratively modify the bounding box, it becomes cumbersome
to understanding what form should have the action history in
works where the agent deals with a selection problem (such as
selecting the appearance model to use) or any other decision
that changes the tracker state (as the choice to update or not
the appearance model).

B. REWARD FUNCTION
The main limitation of functions like that in Eq. 10 is that
there is no difference in the reward of actions yielding to high
IoU. In other words, the agent has settled for bounding boxes
whose IoU with the ground-truth is higher than the threshold
τ even if it could get more accurate ones. A continuous value
reward could address this issue. However, especially at the
beginning of the training, the agent has to be strongly penal-
ized for selecting not promising actions. A reward function
similar to that in [123] and that can be easily adapted to use
1IoU may suffice:

f (st , at , gt) =

{
IoU (st , gt)+ α, if IoU (st , gt) > τ

−α, else.

In theory, it might be possible to adopt a behavior shaping
strategy [21] in which, while the agent learns to take more
andmore convenient actions, the reward function changes and
the agent attempts to solve problems of increasing difficulty.
However, in [68], the use of behavioral shaping for tabular
Q-functions is discouraged due to the risk of getting the agent
trapped in a local optimum from which it cannot escape by
varying the reward function. Certainly, this is another issue
that should be investigated in DRL.

The approaches considered in this paper define the reward
functions by using ground-truth information. There might be
other correlated information to be used to define the reward
function in methods where actions represent changes to the
target bounding box. High-level annotations, such as verbal
descriptions of the target [145], or IRL might be exploited
to define new reward functions; ideally, it might be possible
to learn off-line and independently a function that estimates
the IoU in a supervised way to be used within the DRL
framework. All these strategies are worthy of future research.

C. INITIALIZATION AND TRAINING OF THE MODEL
In practice, most of the surveyed approaches complain that
convergence is difficult to reach without supervised learning.
We actually suspect that the problem is mainly ascribable
to the policy network parameter initialization. To under-
stand this problem, we focus on DQL approaches whilst
the problem arises also in the other DRL frameworks.

In DQL, the state is given in input to the Q-network. During
learning, it is generally adopted an ε-greedy policy, namely
with a probability ε the action is chosen uniformly at random,
otherwise, the action is the one providing the highest Q-value.
In practice, in the latter case, the agent trusts in its former
experience. At the beginning of the training procedure, how-
ever, no experience has been accumulated and the training
may proceed in a direction that does not bring to the optimal
solution since some non-optimal action-state pairs would
seem preferable to others due to the random initialization
of the policy. Even if ε is initially set to 1 and annealed
over time, this may not be enough to cancel the initial bias
of the policy network. This problem has also been pointed
out in [68] for tabular Q-learning where it is suggested to
initialize the Q-function uniformly to a value that is higher
than the Q-value achieved if the reward would be constant
whatever the action selected by the agent is. Such kind of
initialization guarantees that the policy is not initially biased
towards some subset of action-state pairs. To the best of our
knowledge, this initialization issue has been overlooked in
DRL-based visual tracking approaches. It is so far unclear
what is the effect of initializing a policy network to a constant
value considering that such functions are highly non-linear,
and we believe this is another research direction to investigate
in the future.

A problem in RL is that of obtaining batches of uncorre-
lated samples. In our understanding, this problem has been
always approached by sampling mini-batches from the mem-
ory buffer. However, as pointed out in [101], imbalanced
batches can hurt the learning process. In [101], annota-
tions are used to provide more guidance during the learning
process. We believe that other solutions are possible. For
instance, as done in classification, the learningmight improve
by sampling mini-batches where the number of samples with
positive and negative rewards is balanced. Boosting strategies
may also be devised to push the agent towards the most
difficult states. Such an idea is similar to the Prioritized
Experience replay [146] where samples from the experience
replay buffer are drawn based on the TD error.

D. DRL ALGORITHMS
In other benchmarks, such as the Atari games, different
DRL approaches have been compared and new algorithms
proposed. For instance, in [147] it has been shown that the
integration of Double DQL, Dueling DQN, N-Step learning,
Prioritized Experience Replay, Distributional RL, Noisy Net-
work yields to an improved algorithm named Rainbow. The
Rainbow algorithm outperforms the other DQL algorithms
also in terms of required training time. The adoption of
Rainbow in visual tracking is an interesting topic of future
investigations.

On the other hand, it has been shown that Q-learning meth-
ods implement policy gradient updates in entropy-regularized
RL, which makes the differences between DQL and D-PG
methods thinner [148]. In [149], [150], it is reported that
AC has certain convergence properties compared to QL but

120896 VOLUME 9, 2021

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

it suffers from a high variance of the policy estimators.
However, AC approaches are prone to instability, due to the
interaction between actor and critic during learning [151]
such that regularization terms are required.

IX. CONCLUSION
This paper presents the current state-of-the-art in DRL-based
visual tracking. First, an overview of the visual tracking
problem and the main deep tracking algorithms is presented.
Then, possible ways to model visual tracking within the
RL framework have been presented. RL and its evolution into
DRL are summarized.

This paper categorizes DRL-based tracking approaches
based on the main pursued goal. Some methods focus on
the problem of estimating the target bounding box on the
image plane. Other approaches focus on the tracking strategy,
namely the prediction of the best tracking hyper-parameters,
the search area where to locate the target, or the tracker
transition from a state to another (such as re-initialize the
tracker or update it). Finally, a third group includes methods
aiming at modeling the target appearance selection/update
process. Within each group, some approaches require model
parameters adaption at test time, while others use pre-trained
models. This paper further categorizes DRL-based tracking
approaches based on the adopted DRL framework, that is
DQL, D-PG, and AC.

DRL has been applied to the tracking problem in different
ways, demonstrating its versatility. The state is generally
represented by an image: a heatmap or an image cropped
around the last predicted target location. The definition of
the actions largely changes depending on the application.
When DRL is used to determine the target bounding box
through discrete actions, actions represent shifts or scaling
factors to adjust the bounding box in a vertical/horizontal
direction. At each frame, the policy is interrogated several
times until a terminal action is selected. In this case, the next
frame is processed. Continuous actions are used to regress the
bounding box parameters, and the policy is interrogated once
per frame.

Analysis of the state-of-the-art shows that most of the
DRL-based approaches achieve state-of-the-art performance.
Apparently, there is not a neural architecture to be preferred
over the others. Training/pre-training strategies widely differ
from paper-to-paper. Pre-training the models in a supervised
way on actions derived from the ground truth seems to accel-
erate the learning.

Overall, the application of DRL to visual tracking is excit-
ing because it allows the system to learn by a trial-and-error
strategy, and it is interesting to see how much a system can
learn from long interactions with the environment. However,
there are still issues to study and solve. For example, the prob-
lems of initializing the policy effectively, of designing a
reward function, and a proper set of actions are still open.
Furthermore, while continuous actions might be the appro-
priate choice in visual tracking, still there are limited training

strategies that can enable the learning of proper policies. All
these issues open up to novel and exciting research directions.

REFERENCES
[1] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning:

A review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[2] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[4] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[5] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2961–2969.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, vol. 521,
no. 7553. Cambridge, MA, USA: MIT Press, 2016, p. 800.

[7] D. Jakubovitz, R. Giryes, and M. R. Rodrigues, ‘‘Generalization error
in deep learning,’’ in Compressed Sensing and its Applications. Cham,
Switzerland: Springer, 2019, pp. 153–193.

[8] E. López-Rubio, ‘‘Computational functionalism for the deep learning
era,’’Minds Mach., vol. 28, no. 4, pp. 667–688, Dec. 2018.

[9] J. C. Caicedo and S. Lazebnik, ‘‘Active object localization with deep
reinforcement learning,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 2488–2496.

[10] D. Held, S. Thrun, and S. Savarese, ‘‘Learning to track at 100 FPS
with deep regression networks,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2016, pp. 749–765.

[11] A. Toshev and C. Szegedy, ‘‘DeepPose: Human pose estimation via deep
neural networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 1653–1660.

[12] P. Li, D. Wang, L. Wang, and H. Lu, ‘‘Deep visual tracking: Review
and experimental comparison,’’ Pattern Recognit., vol. 76, pp. 323–338,
Apr. 2018.

[13] M. Fiaz, A. Mahmood, S. Javed, and S. K. Jung, ‘‘Handcrafted and deep
trackers: Recent visual object tracking approaches and trends,’’ ACM
Comput. Surv., vol. 52, no. 2, pp. 43:1–43:44, 2019.

[14] A. Yilmaz, O. Javed, and M. Shah, ‘‘Object tracking: A survey,’’ ACM
Comput. Surv., vol. 38, no. 4, p. 13, 2006.

[15] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. Van Den Hengel,
‘‘A survey of appearance models in visual object tracking,’’ ACM Trans.
Intell. Syst. Technol., vol. 4, no. 4, p. 58, Sep. 2013.

[16] H. Nam and B. Han, ‘‘Learning multi-domain convolutional neural net-
works for visual tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 4293–4302.

[17] Z. Zhang andH. Peng, ‘‘Deeper andwider Siamese networks for real-time
visual tracking,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 4591–4600.

[18] R. Tao, E. Gavves, and A.W.M. Smeulders, ‘‘Siamese instance search for
tracking,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 1420–1429.

[19] M. Cen and C. Jung, ‘‘Fully convolutional Siamese fusion networks
for object tracking,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Oct. 2018, pp. 3718–3722, doi: 10.1109/ICIP.2018.8451102.

[20] K. Chen and W. Tao, ‘‘Once for all: A two-flow convolutional neural
network for visual tracking,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 28, no. 12, pp. 3377–3386, Dec. 2017.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep reinforce-
ment learning,’’ 2013, arXiv:1312.5602. [Online]. Available: http://
arxiv.org/abs/1312.5602

[23] J. Supancic, III, and D. Ramanan, ‘‘Tracking as online decision-making:
Learning a policy from streaming videos with reinforcement learning,’’
in Proc. Int. Conf. Comput. Vis., 2017, pp. 322–331.

[24] W. Wang, Y. Huang, and L. Wang, ‘‘Language-driven temporal activ-
ity localization: A semantic matching reinforcement learning model,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 334–343.

VOLUME 9, 2021 120897

http://dx.doi.org/10.1109/ICIP.2018.8451102

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

[25] W. Wu, D. He, X. Tan, S. Chen, and S. Wen, ‘‘Multi-agent reinforcement
learning based frame sampling for effective untrimmed video recogni-
tion,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6222–6231.

[26] J. Han, L. Yang, D. Zhang, X. Chang, and X. Liang, ‘‘Reinforcement
cutting-agent learning for video object segmentation,’’ in Proc. Comput.
Vis. Pattern Recognit., 2018, pp. 9080–9089.

[27] R. E. Kalman, ‘‘A new approach to linear filtering and prediction prob-
lems,’’ J. Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.

[28] L. Ljung, ‘‘Asymptotic behavior of the extended Kalman filter as a
parameter estimator for linear systems,’’ IEEE Trans. Autom. Control,
vol. AC-24, no. 1, pp. 36–50, Feb. 1979.

[29] E. A.Wan and R. Van Der Merwe, ‘‘The unscented Kalman filter for non-
linear estimation,’’ in Proc. IEEE Adapt. Syst. Signal Process., Commun.,
Control Symp., Oct. 2000, pp. 153–158.

[30] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, ‘‘Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,’’ IEE Proc. F, Radar
Signal Process., vol. 140, no. 2, pp. 107–113, Apr. 1993.

[31] A. Blake, R. Curwen, and A. Zisserman, ‘‘A framework for spatiotempo-
ral control in the tracking of visual contours,’’ Int. J. Comput. Vis., vol. 11,
no. 2, pp. 127–145, Oct. 1993.

[32] P. Li, T. Zhang, and B. Ma, ‘‘Unscented Kalman filter for visual curve
tracking,’’ Image Vis. Comput., vol. 22, no. 2, pp. 157–164, Feb. 2004.

[33] J. Lou, H. Yang, W. M. Hu, and T. Tan, ‘‘Visual vehicle tracking using an
improved EKF,’’ in Proc. Asian Conf. Comput. Vis., 2002, pp. 296–301.

[34] M. Isard and A. Blake, ‘‘Condensation-conditional density propagation
for visual tracking,’’ Int. J. Comput. Vis., vol. 29, no. 1, pp. 5–28,
Nov. 1998.

[35] B. Babenko, M.-H. Yang, and S. Belongie, ‘‘Robust object tracking with
online multiple instance learning,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 8, pp. 1619–1632, Aug. 2010.

[36] Z. Kalal, K. Mikolajczyk, and J. Matas, ‘‘Tracking-learning-detection,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1409–1422,
Jul. 2011.

[37] D. S. Bolme, B. A. Draper, and J. R. Beveridge, ‘‘Average of syn-
thetic exact filters,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2009, pp. 2105–2112.

[38] D. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, ‘‘Visual
object tracking using adaptive correlation filters,’’ in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2010,
pp. 2544–2550.

[39] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg, ‘‘Learning spatially
regularized correlation filters for visual tracking,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4310–4318.

[40] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. E. Hubbard, and L. D. Jackel, ‘‘Handwritten digit recognition with
a back-propagation network,’’ in Proc. Adv. Neural Inf. Process. Syst.,
1990, pp. 396–404.

[41] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[42] D. H. Ballard, ‘‘Modular learning in neural networks,’’ in Proc. AAAI,
1987, pp. 279–284.

[43] S. Chopra, R. Hadsell, and Y. LeCun, ‘‘Learning a similarity metric
discriminatively, with application to face verification,’’ in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2005,
pp. 539–546.

[44] J. J. Hopfield, ‘‘Neural networks and physical systems with emergent
collective computational abilities,’’ Proc. Nat. Acad. Sci. USA, vol. 79,
no. 8, pp. 2554–2558, 1982.

[45] Z. C. Lipton, J. Berkowitz, and C. Elkan, ‘‘A critical review of recur-
rent neural networks for sequence learning,’’ 2015, arXiv:1506.00019.
[Online]. Available: http://arxiv.org/abs/1506.00019

[46] W. Choi and S. Savarese, ‘‘A unified framework for multi-target tracking
and collective activity recognition,’’ in Eur. Conf. Comput. Vis. Berlin,
Germany: Springer, 2012, pp. 215–230.

[47] J. Schmidhuber, J. Zhao, and M. Wiering, ‘‘Simple principles of met-
alearning,’’ Tech. Rep. IDSIA, vol. 69, pp. 1–23, Jun. 1996.

[48] S. Hochreiter, A. S. Younger, and P. R. Conwell, ‘‘Learning to learn using
gradient descent,’’ inProc. Int. Conf. Artif. Neural Netw.Berlin, Germany:
Springer, 2001, pp. 87–94.

[49] C. Finn, P. Abbeel, and S. Levine, ‘‘Model-agnostic meta-learning for
fast adaptation of deep networks,’’ 2017, arXiv:1703.03400. [Online].
Available: http://arxiv.org/abs/1703.03400

[50] N. Wang and D.-Y. Yeung, ‘‘Learning a deep compact image representa-
tion for visual tracking,’’ in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 809–817.

[51] H. Li, Y. Li, and F. Porikli, ‘‘DeepTrack: Learning discriminative feature
representations online for robust visual tracking,’’ IEEE Trans. Image
Process., vol. 25, no. 4, pp. 1834–1848, Apr. 2015.

[52] I. Jung, J. Son, M. Baek, and B. Han, ‘‘Real-time MDNet,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 83–98.

[53] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg,
‘‘Convolutional features for correlation filter based visual tracking,’’
in Proc. IEEE Int. Conf. Comput. Vis. Workshop (ICCVW), Dec. 2015,
pp. 58–66.

[54] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, ‘‘Hierarchical convolu-
tional features for visual tracking,’’ in Proc. Int. Conf. Comput. Vis., 2015,
pp. 3074–3082.

[55] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, ‘‘ATOM: Accurate
tracking by overlap maximization,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4660–4669.

[56] Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. W. H. Lau,
and M.-H. Yang, ‘‘VITAL: VIsual tracking via adversarial learning,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 8990–8999.

[57] L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and A. Vedaldi,
‘‘Learning feed-forward one-shot learners,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 523–531.

[58] J. Choi, J. Kwon, and K. M. Lee, ‘‘Deep meta learning for real-time
target-aware visual tracking,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 911–920.

[59] E. Park and A. C. Berg, ‘‘Meta-tracker: Fast and robust online adaptation
for visual object trackers,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
2018, pp. 569–585.

[60] G. Wang, C. Luo, X. Sun, Z. Xiong, and W. Zeng, ‘‘Tracking by instance
detection: Ameta-learning approach,’’ in Proc. IEEE/CVFConf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 6288–6297.

[61] G. Bhat, M. Danelljan, L. Van Gool, and R. Timofte, ‘‘Learning dis-
criminative model prediction for tracking,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 6182–6191.

[62] M. Danelljan, L. Van Gool, and R. Timofte, ‘‘Probabilistic regression for
visual tracking,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 7183–7192.

[63] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, ‘‘High performance
visual tracking with Siamese region proposal network,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 8971–8980.

[64] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[65] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan, ‘‘SiamRPN++:
Evolution of Siamese visual tracking with very deep networks,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4282–4291.

[66] T. Yang and A. B. Chan, ‘‘Recurrent filter learning for visual tracking,’’
in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2017,
pp. 2010–2019.

[67] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘‘Reinforcement
learning: A survey,’’ J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285,
Jan. 1996.

[68] L. Matignon, G. J. Laurent, and N. L. Fort-Piat, ‘‘Reward function and
initial values: Better choices for accelerated goal-directed reinforcement
learning,’’ in Proc. Int. Conf. Artif. Neural Netw. Berlin, Germany:
Springer, 2006, pp. 840–849.

[69] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[70] M. Riedmiller, ‘‘Neural fitted Q iteration–first experiences with a data
efficient neural reinforcement learning method,’’ in Proc. Eur. Conf.
Mach. Learn. Berlin, Germany: Springer, 2005, pp. 317–328.

[71] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, ‘‘Asynchronous methods for deep
reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 1928–1937.

[72] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, and S. Petersen, ‘‘Human-level control through deep
reinforcement learning,’’ Nature, vol. 518, no. 7540, p. 529, 2015.

120898 VOLUME 9, 2021

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

[73] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. Conf. Artif. Intell., 2016, pp. 1–7.

[74] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot,
and N. de Freitas, ‘‘Dueling network architectures for deep rein-
forcement learning,’’ 2015, arXiv:1511.06581. [Online]. Available:
http://arxiv.org/abs/1511.06581

[75] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, ‘‘Continuous deep
Q-learning with model-based acceleration,’’ in Proc. Int. Conf. Mach.
Learn., 2016, pp. 2829–2838.

[76] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for
connectionist reinforcement learning,’’ Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, 1992.

[77] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. Int. Conf. Mach.
Learn., 2014, pp. 387–395.

[78] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, ‘‘Continuous control with deep rein-
forcement learning,’’ 2015, arXiv:1509.02971. [Online]. Available:
http://arxiv.org/abs/1509.02971

[79] S. Fujimoto, H. van Hoof, and D. Meger, ‘‘Addressing function approxi-
mation error in actor-critic methods,’’ 2018, arXiv:1802.09477. [Online].
Available: http://arxiv.org/abs/1802.09477

[80] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, ‘‘Trust
region policy optimization,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[81] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proxi-
mal policy optimization algorithms,’’ 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

[82] F. Liu and J. Su, ‘‘Reinforcement learning-based feature learning for
object tracking,’’ in Proc. 17th Int. Conf. Pattern Recognit. (ICPR), vol. 2,
2004, pp. 748–751.

[83] Q. Guo, R. Han, W. Feng, Z. Chen, and L. Wan, ‘‘Selective spatial regu-
larization by reinforcement learned decision making for object tracking,’’
IEEE Trans. Image Process., vol. 29, pp. 2999–3013, 2020.

[84] A. D. Bagdanov, A. del Bimbo, W. Nunziati, and F. Pernici, ‘‘A reinforce-
ment learning approach to active camera foveation,’’ inProc. 4th ACM Int.
Workshop Video Surveill. Sensor Netw. (VSSN), 2006, pp. 179–186.

[85] A. Cohen and V. Pavlovic, ‘‘Reinforcement learning for robust and effi-
cient real-world tracking,’’ in Proc. 20th Int. Conf. Pattern Recognit.,
Aug. 2010, pp. 2989–2992.

[86] K. Meshgi, M. S. Mirzaei, and S. Oba, ‘‘Long and short memory bal-
ancing in visual co-tracking using Q-learning,’’ 2019, arXiv:1902.05211.
[Online]. Available: http://arxiv.org/abs/1902.05211

[87] S. Khim, S. Hong, Y. Kim, and P. K. Rhee, ‘‘Adaptive visual track-
ing using the prioritized Q-learning algorithm: MDP-based parameter
learning approach,’’ Image Vis. Comput., vol. 32, no. 12, pp. 1090–1101,
Dec. 2014.

[88] Y. Xiang, A. Alahi, and S. Savarese, ‘‘Learning to track: Online multi-
object tracking by decision making,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Dec. 2015, pp. 4705–4713.

[89] C. Wu, H. Sun, H. Wang, K. Fu, G. Xu, W. Zhang, and X. Sun, ‘‘Online
multi-object tracking via combining discriminative correlation filters with
making decision,’’ IEEE Access, vol. 6, pp. 43499–43512, 2018.

[90] Y. Jiang, H. Shin, and H. Ko, ‘‘Precise regression for bounding box
correction for improved tracking based on deep reinforcement learning,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Apr. 2018, pp. 1643–1647.

[91] Y. Jiang, D. K. Han, and H. Ko, ‘‘Relay dueling network for visual
tracking with broad field-of-view,’’ IET Comput. Vis., vol. 13, no. 7,
pp. 615–622, Oct. 2019.

[92] Z. Teng, B. Zhang, and J. Fan, ‘‘Three-step action search networks
with deep Q-learning for real-time object tracking,’’ Pattern Recognit.,
vol. 101, May 2020, Art. no. 107188.

[93] M. Guo, J. Lu, and J. Zhou, ‘‘Dual-agent deep reinforcement learning
for deformable face tracking,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
2018, pp. 768–783.

[94] S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Y. Choi, ‘‘Action-decision networks
for visual tracking with deep reinforcement learning,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2711–2720.

[95] D. Huang, L. Kong, J. Zhu, and L. Zheng, ‘‘Improved action-decision
network for visual tracking with meta-learning,’’ IEEE Access, vol. 7,
pp. 117206–117218, 2019.

[96] B. Zhong, B. Bai, J. Li, Y. Zhang, and Y. Fu, ‘‘Hierarchical tracking
by reinforcement learning-based searching and coarse-to-fine verifying,’’
IEEE Trans. Image Process., vol. 28, no. 5, pp. 2331–2341, May 2018.

[97] M.-X. Jiang, C. Deng, Z.-G. Pan, L.-F. Wang, and X. Sun, ‘‘Multiobject
tracking in videos based on LSTM and deep reinforcement learning,’’
Complexity, vol. 2018, pp. 1–12, Nov. 2018.

[98] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks
for large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online].
Available: http://arxiv.org/abs/1409.1556

[99] A. Newell, K. Yang, and J. Deng, ‘‘Stacked hourglass networks for human
pose estimation,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2016, pp. 483–499.

[100] S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Y. Choi, ‘‘Action-driven visual
object tracking with deep reinforcement learning,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 6, pp. 2239–2252, Jun. 2018.

[101] B. Chen, D. Wang, P. Li, S. Wang, and H. Lu, ‘‘Real-time ‘actor-critic’
tracking,’’ in Proc. ECCV, 2018, pp. 318–334.

[102] S. Zheng and H. Wang, ‘‘Real-time visual object tracking based on
reinforcement learning with twin delayed deep deterministic algorithm,’’
in Proc. Int. Conf. Intell. Sci. Big Data Eng.Cham, Switzerland: Springer,
2019, pp. 165–177.

[103] M. Dunnhofer, N. Martinel, G. L. Foresti, and C. Micheloni, ‘‘Visual
tracking by means of deep reinforcement learning and an expert demon-
strator,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW),
Oct. 2019, pp. 2290–2299.

[104] Q. Wang, L. Zhuang, N. Wang, W. Zhou, and H. Li, ‘‘Learning motion-
aware policies for robust visual tracking,’’ in Proc. IEEE Int. Conf.
Multimedia Expo (ICME), Jul. 2019, pp. 1786–1791.

[105] D. Zhang, H. Maei, X. Wang, and Y.-F. Wang, ‘‘Deep reinforcement
learning for visual object tracking in videos,’’ 2017, arXiv:1701.08936.
[Online]. Available: http://arxiv.org/abs/1701.08936

[106] X. Liu, Q. Xu, T. Chau, Y. Mu, L. Zhu, and S. Yan, ‘‘Revisiting
jump-diffusion process for visual tracking: A reinforcement learning
approach,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 8,
pp. 2431–2441, Aug. 2019.

[107] W. Luo, P. Sun, F. Zhong, W. Liu, T. Zhang, and Y. Wang, ‘‘End-to-
end active object tracking and its real-world deployment via reinforce-
ment learning,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 6,
pp. 1317–1332, Jun. 2020.

[108] F. Zhong, P. Sun,W. Luo, T. Yan, andY.Wang, ‘‘AD-VAT:An asymmetric
duelingmechanism for learning visual active tracking,’’ inProc. Int. Conf.
Learn. Represent., 2018, pp. 1–16.

[109] W. Luo, P. Sun, F. Zhong, W. Liu, T. Zhang, and Y. Wang, ‘‘End-to-
end active object tracking via reinforcement learning,’’ in Proc. Int. Conf.
Mach. Learn., 2018, pp. 1–10.

[110] F. Zhong, P. Sun, W. Luo, T. Yan, and Y. Wang, ‘‘AD-VAT+: An asym-
metric dueling mechanism for learning and understanding visual active
tracking,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 5,
pp. 1467–1482, May 2021.

[111] X. Dong, J. Shen,W.Wang, Y. Liu, L. Shao, and F. Porikli, ‘‘Hyperparam-
eter optimization for tracking with continuous deep Q-learning,’’ in Proc.
IEEE/CVFConf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 518–527.

[112] X. Dong, J. Shen, W. Wang, L. Shao, H. Ling, and F. Porikli, ‘‘Dynam-
ical hyperparameter optimization via deep reinforcement learning in
tracking,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 5,
pp. 1515–1529, May 2021.

[113] H. K. Galoogahi, A. Fagg, and S. Lucey, ‘‘Learning background-aware
correlation filters for visual tracking,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 1135–1143.

[114] M. H. Abdelpakey and M. S. Shehata, ‘‘DP-Siam: Dynamic policy
Siamese network for robust object tracking,’’ IEEE Trans. Image Pro-
cess., vol. 29, pp. 1479–1492, 2019.

[115] L. Ren, X. Yuan, J. Lu, M. Yang, and J. Zhou, ‘‘Deep reinforcement
learning with iterative shift for visual tracking,’’ in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 684–700.

[116] L. Wang, W. Ouyang, X. Wang, and H. Lu, ‘‘Visual tracking with fully
convolutional networks,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 3119–3127.

[117] Z. Zhong, Z. Yang, W. Feng, W. Wu, Y. Hu, and C.-L. Liu, ‘‘Decision
controller for object tracking with deep reinforcement learning,’’ IEEE
Access, vol. 7, pp. 28069–28079, 2019.

[118] K. Song, W. Zhang, W. Lu, Z.-J. Zha, X. Ji, and Y. Li, ‘‘Visual object
tracking via guessing and matching,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 30, no. 11, pp. 4182–4191, Nov. 2020.

VOLUME 9, 2021 120899

G. Cruciata et al.: On Use of DRL for Visual Tracking: Survey

[119] W. Song, S. Li, T. Chang, A. Hao, Q. Zhao, and H. Qin, ‘‘Cross-view
contextual relation transferred network for unsupervised vehicle tracking
in drone videos,’’ in Proc. IEEEWinter Conf. Appl. Comput. Vis. (WACV),
Mar. 2020, pp. 1707–1716.

[120] X. Wang, C. Li, B. Luo, and J. Tang, ‘‘SINT++: Robust visual tracking
via adversarial positive instance generation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4864–4873.

[121] C. Huang, S. Lucey, and D. Ramanan, ‘‘Learning policies for adaptive
tracking with deep feature cascades,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 105–114.

[122] Y. Liu, X. Dong, X. Lu, F. S. Khan, J. Shen, and S. Hoi, ‘‘Teacher-students
knowledge distillation for Siamese trackers,’’ 2019, arXiv:1907.10586.
[Online]. Available: http://arxiv.org/abs/1907.10586

[123] Y. Xie, J. Xiao, K. Huang, J. Thiyagalingam, and Y. Zhao, ‘‘Correlation
filter selection for visual tracking using reinforcement learning,’’ 2018,
arXiv:1811.03196. [Online]. Available: http://arxiv.org/abs/1811.03196

[124] W. Huang, Y. Wu, and Y. Jia, ‘‘Tracker-level decision by deep rein-
forcement learning for robust visual tracking,’’ in Proc. Int. Conf. Image
Graph. Cham, Switzerland: Springer, 2019, pp. 442–453.

[125] J. Choi, J. Kwon, and K. M. Lee, ‘‘Real-time visual tracking by deep
reinforced decision making,’’ Comput. Vis. Image Understand., vol. 171,
pp. 10–19, Jun. 2018.

[126] M. Sun, J. Xiao, E. G. Lim, B. Zhang, and Y. Zhao, ‘‘Fast template
matching and update for video object tracking and segmentation,’’ in
Proc. CVPR, 2020, pp. 10791–10799.

[127] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, ‘‘YOLACT: Real-time instance
segmentation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 9157–9166.

[128] T. Xu, Z.-H. Feng, X.-J. Wu, and J. Kittler, ‘‘Joint group feature selec-
tion and discriminative filter learning for robust visual object track-
ing,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 7950–7960.

[129] H. Fan and H. Ling, ‘‘Siamese cascaded region proposal networks for
real-time visual tracking,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 7952–7961.

[130] S. Tian, X. Liu, M. Liu, S. Li, and B. Yin, ‘‘Siamese tracking net-
work with informative enhanced loss,’’ IEEE Trans. Multimedia, vol. 23,
pp. 120–132, 2021.

[131] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, ‘‘ECO: Efficient
convolution operators for tracking,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 6638–6646.

[132] Y. Wu, J. Lim, and M.-H. Yang, ‘‘Online object tracking: A benchmark,’’
in Proc. Comput. Vis. Pattern Recognit., 2013, pp. 2411–2418.

[133] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder, G. Fernandez,
G. Nebehay, F. Porikli, and L. Čehovin, ‘‘A novel performance evaluation
methodology for single-target trackers,’’ IEEE Trans. Pattern Anal.Mach.
Intell., vol. 38, no. 11, pp. 2137–2155, Nov. 2016.

[134] Y. Wu, J. Lim, and M. H. Yang, ‘‘Object tracking benchmark,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1834–1848,
Sep. 2015.

[135] H. Fan, H. Ling, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai,
Y. Xu, and C. Liao, ‘‘LaSOT: A high-quality benchmark for large-scale
single object tracking,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 5374–5383.

[136] M. Muller, A. Bibi, S. Giancola, S. Alsubaihi, and B. Ghanem, ‘‘Track-
ingNet: A large-scale dataset and benchmark for object tracking in the
wild,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 300–317.

[137] P. Liang, E. Blasch, and H. Ling, ‘‘Encoding color information for visual
tracking: Algorithms and benchmark,’’ IEEE Trans. Image Process.,
vol. 24, no. 12, pp. 5630–5644, Dec. 2015.

[138] L. Huang, X. Zhao, and K. Huang, ‘‘GOT-10k: A large high-diversity
benchmark for generic object tracking in the wild,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 43, no. 5, pp. 1562–1577, May 2021.

[139] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, and A. C. Berg, ‘‘ImageNet large
scale visual recognition challenge,’’ Int. J. Comput. Vis., vol. 115, no. 3,
pp. 211–252, Dec. 2015.

[140] A.W.M. Smeulders, D.M. Chu, R. Cucchiara, S. Calderara, A. Dehghan,
and M. Shah, ‘‘Visual tracking: An experimental survey,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 36, no. 7, pp. 1442–1468, Jul. 2014.

[141] L. Čehovin, A. Leonardis, andM. Kristan, ‘‘Visual object tracking perfor-
mance measures revisited,’’ IEEE Trans. Image Process., vol. 25, no. 3,
pp. 1261–1274, Mar. 2016.

[142] M. Jiang, T. Hai, Z. Pan, H.Wang, Y. Jia, and C. Deng, ‘‘Multi-agent deep
reinforcement learning for multi-object tracker,’’ IEEE Access, vol. 7,
pp. 32400–32407, 2019.

[143] S. Zhang and R. S. Sutton, ‘‘A deeper look at experience replay,’’ 2017,
arXiv:1712.01275. [Online]. Available: http://arxiv.org/abs/1712.01275

[144] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
‘‘Dueling network architectures for deep reinforcement learning,’’ in
Proc. Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[145] Q. Feng, V. Ablavsky, Q. Bai, G. Li, and S. Sclaroff, ‘‘Real-time visual
object tracking with natural language description,’’ in Proc. IEEE Winter
Conf. Appl. Comput. Vis. (WACV), Mar. 2020, pp. 700–709.

[146] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized
experience replay,’’ 2015, arXiv:1511.05952. [Online]. Available:
http://arxiv.org/abs/1511.05952

[147] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, ‘‘Rainbow:
Combining improvements in deep reinforcement learning,’’ in Proc. 32nd
Conf. Artif. Intell. (AAAI), 2018, pp. 3215–3222.

[148] J. Schulman, X. Chen, and P. Abbeel, ‘‘Equivalence between policy gradi-
ents and soft Q-learning,’’ 2017, arXiv:1704.06440. [Online]. Available:
http://arxiv.org/abs/1704.06440

[149] V. R. Konda and J. N. Tsitsiklis, ‘‘Actor-critic algorithms,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2000, pp. 1008–1014.

[150] S. Bhatnagar, M. Ghavamzadeh, M. Lee, and R. S. Sutton, ‘‘Incremental
natural actor-critic algorithms,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2008, pp. 105–112.

[151] S. Parisi, V. Tangkaratt, J. Peters, and M. E. Khan, ‘‘TD-regularized
actor-critic methods,’’ Mach. Learn., vol. 108, nos. 8–9, pp. 1467–1501,
Sep. 2019.

GIORGIO CRUCIATA is currently pursuing the
Ph.D. degree in innovation technology with
the University of Palermo, Italy. He belongs to the
CVIP Research Group. His main research interest
includes deep reinforcement learning applied to
computer vision problems.

LILIANA LO PRESTI is currently an Assistant
Professor with the University of Palermo. She
teaches programming and algorithms and data
structures in engineering courses. She belongs to
the CVIP Research Group. Her main research
interests include machine learning techniques
applied to computer vision problems, especially
visual tracking and action recognition.

MARCO LA CASCIA is currently a Full Professor
with the University of Palermo, where he is the
Director of the CVIP Research Group. He teaches
programming and web programming to students in
computer engineering. His main research interests
include computer vision and multimedia process-
ing, especially tracking, action recognition, and
content-based image/video retrieval.

120900 VOLUME 9, 2021

