1,538 research outputs found

    Multifractal analysis of electronic states on random Voronoi-Delaunay lattices

    Full text link
    We consider the transport of non-interacting electrons on two- and three-dimensional random Voronoi-Delaunay lattices. It was recently shown that these topologically disordered lattices feature strong disorder anticorrelations between the coordination numbers that qualitatively change the properties of continuous and first-order phase transitions. To determine whether or not these unusual features also influence Anderson localization, we study the electronic wave functions by multifractal analysis and finite-size scaling. We observe only localized states for all energies in the two-dimensional system. In three dimensions, we find two Anderson transitions between localized and extended states very close to the band edges. The critical exponent of the localization length is about 1.6. All these results agree with the usual orthogonal universality class. Additional generic energetic randomness introduced via random potentials does not lead to qualitative changes but allows us to obtain a phase diagram by varying the strength of these potentials

    Vision-Based Localization Algorithm Based on Landmark Matching, Triangulation, Reconstruction, and Comparison

    No full text
    Many generic position-estimation algorithms are vulnerable to ambiguity introduced by nonunique landmarks. Also, the available high-dimensional image data is not fully used when these techniques are extended to vision-based localization. This paper presents the landmark matching, triangulation, reconstruction, and comparison (LTRC) global localization algorithm, which is reasonably immune to ambiguous landmark matches. It extracts natural landmarks for the (rough) matching stage before generating the list of possible position estimates through triangulation. Reconstruction and comparison then rank the possible estimates. The LTRC algorithm has been implemented using an interpreted language, onto a robot equipped with a panoramic vision system. Empirical data shows remarkable improvement in accuracy when compared with the established random sample consensus method. LTRC is also robust against inaccurate map data

    Developing Algorithms for Quantifying the Super Resolution Microscopic Data: Applications to the Quantification of Protein-Reorganization in Bacteria Responding to Treatment by Silver Ions

    Get PDF
    Histone-like nucleoid structuring proteins (HNS) play significant roles in shaping the chromosomal DNA, regulation of transcriptional networks in microbes, as well as bacterial responses to environmental changes such as temperature fluctuations. In this work, the intracellular organization of HNS proteins in E. coli bacteria was investigated utilizing super-resolution fluorescence microscopy, which surpasses conventional microscopy by 10–20 fold in spatial resolution. More importantly, the changes of the spatial distribution of HNS proteins in E. coli, by addition of silver ions into the growth medium were explored. To quantify the spatial distribution of HNS in bacteria and its changes, an automatic method based on Voronoi diagram was implemented. The HNS proteins localized in super-resolution fluorescence microscopy were segmented and clustered based on several quantitative parameters, such as molecular areas, molecular densities, and mean inter-molecular distances of the k-th rank, all of which were computed from the Voronoi diagrams. These parameters, as well as the associated clustering analysis, allowed us to quantify how the spatial organization of HNS proteins responds to silver, and provided insight into understanding how microbes adapt to new environments

    Relativistic-dft study of the electronic structure, bonding and energetic of the [ref8]־ and [uf8]2- ions

    Get PDF
    Indexación: ScieloABSTRACT In this study we evaluated the importance of the relativistic effects (scalar and spin-orbit) on the description of the electronic structure, bonding and the energetic of the [ReF8]- and [UF8]2- ions. We described the bonding interaction between ligands and metal center using the energy decomposition analysis (EDA) proposed by Morokuma and Ziegler, in which it can be appreciated a strong ionic behavior for both ions since the electrostatic interaction energy (∆Ezlestat) is greater than the orbitalic interaction energy (∆EOrb). Furthermore, a qualitative analysis using the mapping of the electrostatic potential over the total electronic density evidence an increase of the ionic character, as well as, the polarization of the electronic density as U > Re. The electron localization function (ELF) corroborates the bonding analysis because of the lack of di-synaptic basins on the metal-ligand bonding region

    RELATIVISTIC-DFT STUDY OF THE ELECTRONIC STRUCTURE, BONDING AND ENERGETIC OF THE [ReF8]־ AND [UF8]2- IONS

    Get PDF
    Indexación: Web of Science; Scielo.In this study we evaluated the importance of the relativistic effects (scalar and spin-orbit) on the description of the electronic structure, bonding and the energetic of the [ReF8]- and [UF8]2- ions. We described the bonding interaction between ligands and metal center using the energy decomposition analysis (EDA) proposed by Morokuma and Ziegler, in which it can be appreciated a strong ionic behavior for both ions since the electrostatic interaction energy (∆Ezlestat) is greater than the orbitalic interaction energy (∆EOrb). Furthermore, a qualitative analysis using the mapping of the electrostatic potential over the total electronic density evidence an increase of the ionic character, as well as, the polarization of the electronic density as U > Re. The electron localization function (ELF) corroborates the bonding analysis because of the lack of di-synaptic basins on the metal-ligand bonding region.http://ref.scielo.org/jcbd4

    Kibble-Zurek mechanism in curved elastic surface crystals

    Full text link
    Topological defects shape the material and transport properties of physical systems. Examples range from vortex lines in quantum superfluids, defect-mediated buckling of graphene, and grain boundaries in ferromagnets and colloidal crystals, to domain structures formed in the early universe. The Kibble-Zurek (KZ) mechanism describes the topological defect formation in continuous non-equilibrium phase transitions with a constant finite quench rate. Universal KZ scaling laws have been verified experimentally and numerically for second-order transitions in planar Euclidean geometries, but their validity for discontinuous first-order transitions in curved and topologically nontrivial systems still poses an open question. Here, we use recent experimentally confirmed theory to investigate topological defect formation in curved elastic surface crystals formed by stress-quenching a bilayer material. Studying both spherical and toroidal crystals, we find that the defect densities follow KZ-type power laws independent of surface geometry and topology. Moreover, the nucleation sequences agree with recent experimental observations for spherical colloidal crystals. These results suggest that KZ scaling laws hold for a much broader class of dynamical phase transitions than previously thought, including non-thermal first-order transitions in non-planar geometries.Comment: 8 pages, 3 figures; introduction and typos correcte
    corecore