944 research outputs found

    Scalable Techniques for Similarity Search

    Get PDF
    Document similarity is similar to the nearest neighbour problem and has applications in various domains. In order to determine the similarity / dissimilarity of the documents first they need to be converted into sets containing shingles. Each document is converted into k-shingles, k being the length of each shingle. The similarity is calculated using Jaccard distance between sets and output into a characteristic matrix, the complexity to parse this matrix is significantly high especially when the sets are large. In this project we explore various approaches such as Min hashing, LSH & Bloom Filter to decrease the matrix size and to improve the time complexity. Min hashing creates a signature matrix which significantly smaller compared to a characteristic matrix. In this project we will look into Min-Hashing implementation, pros and cons. Also we will explore Locality Sensitive Hashing, Bloom Filters and their advantages

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before
    corecore