
Noise­tolerant approximate blocking for
dynamic real­time entity resolution
Conference or Workshop Item

Accepted Version

Liang, H., Wang, Y., Christen, P. and Gayler, R. (2014) Noise­
tolerant approximate blocking for dynamic real­time entity
resolution. In: The 18th Pacific­Asia Conference on Knowledge
Discovery and Data Mining, 13­16 May 2014, Taiwan, pp. 449­
460. Available at http://centaur.reading.ac.uk/82137/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: https://doi.org/10.1007/978­3­319­06605­9_37

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/187087215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Reading’s research outputs online

Noise-Tolerant Approximate Blocking for
Dynamic Real-time Entity Resolution ⋆

Huizhi Liang1, Yanzhe Wang1, Peter Christen1, and Ross Gayler2

1 Research School of Computer Science, The Australian National University,
Canberra ACT 0200, Australia;

huizhi.liang@anu.edu.au,colin788@163.com,peter.christen@anu.edu.au
2 Veda, Melbourne VIC 3000, Australia; ross.gayler@veda.com.au

Abstract. Entity resolution is the process of identifying records in one
or multiple data sources that represent the same real-world entity. This
process needs to deal with noisy data that contain for example wrong pro-
nunciation or spelling errors. Many real world applications require rapid
responses for entity queries on dynamic datasets. This brings challenges
to existing approaches which are mainly aimed at the batch matching of
records in static data. Locality sensitive hashing (LSH) is an approximate
blocking approach that hashes objects within a certain distance into the
same block with high probability. How to make approximate blocking ap-
proaches scalable to large datasets and effective for entity resolution in
real-time remains an open question. Targeting this problem, we propose
a noise-tolerant approximate blocking approach to index records based
on their distance ranges using LSH and sorting trees within large sized
hash blocks. Experiments conducted on both synthetic and real-world
datasets show the effectiveness of the proposed approach.

Keywords: Entity Resolution, Real-time, Locality Sensitive Hashing,
Indexing

1 Introduction

The purpose of entity resolution is to find records in one or several databases
that belong to the same real-world entity. Such an entity can for example be a
person (e.g. customer, patient, or student), a consumer product, a business, or
any other object that exists in the real world. Entity resolution is widely used
in various applications such as identity crime detection (e.g. credit card fraud
detection) and estimation of census population statistics [1].

Currently, most available entity resolution techniques conduct the resolution
process in offline or batch mode with static databases. However, in real-world
scenarios, many applications require real-time responses. This requires entity
resolution on query records that need to be matched within sub-seconds with

⋆ This research was funded by the Australian Research Council (ARC), Veda Advan-
tage, and Funnelback Pty. Ltd., under Linkage Project LP100200079. Note the first
two authors contributed equally.

databases that contain (a possibly large number of) known entities [1]. For ex-
ample, online entity resolution based on personal identifying details can help a
bank to identify fraudulent credit card applications [2], while law enforcement
officers need to identify suspect individuals within seconds when they conduct
an identity check [1]. Moreover, real-world databases are often dynamic. The re-
quirement of dealing with large-scale dynamic data with quick responses brings
challenges to current entity resolution techniques. Only limited research has so
far focused on using entity resolution at query time [3, 4] or in real-time [5, 6].

Typically, pair-wise comparisons between records are used to identify the
records that belong to the same entity. The number of record comparisons in-
creases dramatically as the size of a database grows. Indexing techniques such
as blocking or canopy formation can help to significantly decrease the number of
comparisons [1]. Often phonetic encoding functions, such as Soundex or Double
Metaphone, are used to overcome differences in attribute values.

Locality sensitive hashing (LSH) [7] is an approximate blocking approach
that uses l length k hash functions to map records within a certain distance
range into the same block with a given probability. This approach [8] can filter
out records with low similarities, thus decreasing the number of comparisons.
However, the tuning of the required parameters k and l is not easy [9]. This is
especially true for large-scale dynamic datasets. For some query records, one may
need to investigate records with low similarities, while for other query records
one only needs to investigate those records with high similarities with the query
record. Moreover, entity resolution needs to deal with noise such as pronunciation
or spelling errors. Although some LSH approaches such as multi-probe [10] are
to decrease the number of hash functions needed, the question of how to make
blocking approaches become more noise-tolerant and scalable remains open.

In this paper, we propose a noise-tolerant approximate blocking approach
to conduct real-time entity resolution. To deal with noise, an n-gram based
approach [1] is employed where attribute values are converted into sets of n-
grams (i.e, substring sets of length n). Then, LSH is used to group records into
blocks with various distance ranges based on the Jaccard similarity of their n-
grams. To be scalable, for blocks that are large (i.e., contains more than a certain
number of records), we propose to build dynamic sorting trees inside these blocks
and return a small set of nearest neighbor records for a given query record.

2 Related Work

Indexing techniques can help to scale-up the entity resolution process [1]. Com-
monly used indexing approaches include standard blocking based on inverted
indexing and phonetic encoding, n-gram indexing, suffix array based indexing,
sorted neighborhood, multi-dimensional mapping, and canopy clustering. Some
recent work has proposed automatic blocking mechanisms [11]. Only a small
number of approaches have addressed real-time entity resolution. Christen et
al. [5] and Ramadan et al. [6] proposed a similarity-aware indexing approach for
real-time entity resolution. However, this approach fails to work well for large

datasets, as the number of similarity comparisons for new attribute values in-
creases significantly when the size of each encoding block grows.

Approximate blocking techniques such as LSH and tree based indexing [9]
are widely used in nearest neighbour similarity search in applications such as
recommender systems [12] and entity resolution [8]. In LSH techniques, the col-
lision probability of a LSH family is used as a proxy for a given distance or
similarity measure function. Popularly used LSH families include the minHash
family for Jaccard distance, the random hyperplane family for Cosine Distance,
and the p-stable distribution family for Euclidean Distance [13].

Recently, Gan et al. [14] proposed to use a hash function base with n basic
length 1 signatures rather than using fixed l length k signatures or a forest [9]
to represent a data point. The data points that are frequently colliding with
the query record across all the signatures are selected as the approximate sim-
ilarity search results. However, as k=1 usually leads to large sized blocks, this
approach needs to scan all the data points in the blocks to get the frequently
colliding records each time. This makes it difficulty to retrieve results quickly
for large-scale datasets. Some approaches such as multi-probe [10] have been
used to decrease the number of hash functions needed. However, how to explore
LSH blocks in a fast way and decrease the retrieval time to facilitate real-time
approximate similarity search for large scale datasets still needs to be explored.

3 Problem Definition

To describe the proposed approach, we first define some key concepts.

– Record Set: R = {r1, r2, . . . , r|R|} contains all existing records in a dataset.
Each record corresponds to an entity, such as a person. Let U denote the
universe of all possible records, R ⊆ U .

– Element: An element is an n-gram of an attribute value. Elements may
overlap but do not cross attribute boundaries. A record contains 1 . . .m
elements, denoted as ri = {vi1, vij , . . . , vim}.

– Query Record: A query record qi ∈ U is a record that has the same
attribute schema as the records in R. After query processing and matching,
qi will be inserted into R as a new record r|R|+1.

– Query Stream: Q = {q1, q2, . . . , q|Q|} is a set of query records.
– Entity Set: E = {e1, e2, . . . , e|E|} contains all unique entities in U .

For a given record ri ∈ R, the decision process of linking ri with the corre-
spondent entity ej ∈ E is denoted as ri → ej , and ej = l(ri), where l(ri) denotes
the function of finding the entity of record ri. The problem of real-time entity
resolution is defined as: for each query record qi in a query stream Q, let ej be
the entity of qi, ej = l(qi), find all the records in R that belong to the same entity
as the query record as the query record in sub-second time. Let Lqi denote the
records in R that belong to ej , Lqi = {rk | rk → l(qi), rk ∈ R}, Lqi ⊆ R, qi ∈ Q.

Record Entity First Family City Zip
ID ID Name Name Code

r1 e1 Tony Hua Sydney 4329
r2 e2 Emily Hu Perth 1433
r3 e3 Yong Wan Perth 4320

r4 e1 Tonny Hue Syndey 4456

(a) An example record dataset

Record 2-grams (n=2)
ID

r1 to, on, ny, hu, ua, sy, yd,
dn, ne, ey, 43, 32, 29

r2 em, mi, il, ly, hu, pe,
er, rt, th, 14, 43, 33

r3 yo, on, ng, wa, an, pe,
er, rt, th, 43, 22, 20

r4 to, on, nn, ny, hu, ue, sy,
yn, nd, de, ey, 43, 35, 56

(b) The elements(2-grams) for the exam-
ple records

Fig. 1. An example dataset and the elements(2-grams) of each record

[Example 1] Figure 1(a) shows example records r1, r2, r3, and r4. They
belong to three entities e1, e2, and e3. Assume r4 is a query record, the entity
resolution process for r4 is to find Lr4 = {r1} based on the four attribute values.

4 Proposed Approximate Blocking Approach

A blocking schema [15] is an approach to map a set of records into a set of
blocks. Blocking schemes generate signatures for records. A blocking scheme
can be a LSH function, a canopy clustering function, or a phonetic encoding
function [1]. Those records with the same signature will be allocated together in
the same block. To make a LSH blocking scheme scalable for large-scale dynamic
datasets, we propose to build a dynamic sorting tree to sort the records of
large-sized LSH blocks and return a window of nearest neighbors for a query
record. Through controlling the window size, we can select nearest neighbors with
various approximate similarity ranges for the purpose of being noise-tolerant.
Thus, the proposed approach includes two parts: LSH and dynamic sorting tree,
which will be discussed in Section 4.1 and 4.2. Then, the discussion of conducting
entity resolution based on the proposed blocking approach will be in Section 4.3.

4.1 Locality Sensitive Hashing

LSH can help to find approximate results for a query record for high dimensional
data. Let h denote a basic approximate blocking scheme for a given distance
measure D, Pr(i) denote the probability of an event i, and p1 and p2 are two
probability values, p1 > p2, 0 ≤ p1, p2 ≤ 1. h is called (d1, d2, p1, p2)-sensitive for
D, if for any records rx, ry ∈ R, the following conditions hold:

1. if D(rx, ry) ≤ d1 then Pr(h(rx) = h(ry)) ≥ p1
2. if D(rx, ry) > d2 then Pr(h(rx) = h(ry)) ≤ p2

Fig. 2. Example hash values, LSH family, and generated blocks and a dynamic sorting
tree for the example dataset in Figure 1, r4 is a query record.

Minwise hashing (minHash) is a popular LSH approach that estimates the
Jaccard similarity [7]. Let J(rx, ry) denote the Jaccard similarity for any two
records rx and ry. This hashing method applies a random permutation Π on the
elements of any two records rx and ry and utilizes

Pr(min(Π(rx)) = min(Π(ry))) = J(rx, ry) =
|rx

∩
ry|

|rx
∪
ry|

(1)

to estimate the Jaccard similarity of rx and ry, wheremin(Π(rx)) denotes the
minimum value of the random permutation of the elements of record rx. p denotes
the hash collision probability Pr(min(Π(rx)) = min(Π(ry))). It represents the
ratio of the size of the intersection of the elements of the two records to that of
the union of the elements of the two records. A minHash function can generate
a basic signature for a given record. The basic signature is called a length 1
signature and the hash function is called a length 1 hash function.

In order to allocate records that have higher similarities with each other into
the same block, k length 1 hash functions can be combined to form a length k
(k > 1) compound blocking scheme to get the intersection records of the basic
length 1 blocking schemes. Let hc denote a compound LSH blocking scheme that
is the AND-construction (conjunction) of k basic LSH blocking schemes hi, hc =
∧k
i=1hi. Let pc denote the collision probability of a length k compound blocking

scheme. It can be calculated based on the product of the collision probabilities
of its basic length 1 blocking schemes, denoted as pc = pk. To increase the
collision probability, each record is hashed l times to conduct OR-construction
(disjunction) and form l hash tables (i.e., l length k signatures), n = k · l. Let
Hk,l denote a LSH family that has l length k hashing blocking schemes, the
collision probability of Hk,l can be estimated with pk,l = 1− (1− pk)l.

[Example 2] (LSH blocking scheme and blocks) Figure 2 (a) shows the
example length 1 minHash signatures of the example records in Figure 1. Figure
2 (b) shows an example LSH blocking schemeH2,2 and the generated LSH blocks.
H2,2 = {h1∧h2, h3∧h4}, k = 2 and l = 2. The records are allocated into different
blocks based on the given blocking scheme, shown in Figure 2 (b). For example,
the length 2 blocking scheme h1 ∧ h2 generated block signatures 3 2 and 3 5.
Records r1, r3 and r4 are allocated in block 3 2 while r2 is in block 3 5.

4.2 Dynamic Sorting Tree

Based on a given LSH FamilyHk,l, we can allocate records with certain similarity
into the same LSH block and filter out those records that have lower similarities.
Using a large value of k will result in smaller sized blocks and decrease the
number of pair-wise comparisons, but it may result in low recall because a large
value for k may filter out some true matched records that have low similarities.
A small value for k usually can get higher recall values but may result in large-
sized blocks. As scanning the records in large-sized blocks to conduct pair-wise
comparisons is usually time-consuming, how to quickly identify a small set of
nearest neighbors in a large sized LSH block is very important.

If we sort the records in a LSH block and only return a small set of similar
records for each query record, then the exploration of the whole large-sized block
can be avoided. B+ trees are commonly used to sort the data points for dynamic
data in one dimension [9]. We build a B+ tree to sort the records inside each
large sized LSH block. As forming sub-blocks for those small sized blocks is
not necessary, we set up a threshold for building sorting trees in a block. Let γ
(γ > 1)denote this threshold, if the size of a block Bi is greater than γ, then
we build a B+ tree for Bi, otherwise, no sorting tree will be formed. To build a
sorting tree, we firstly discuss how to select a sorting key.

Selecting a Sorting Key Adaptively. Typically, the sorting key can be as-
signed by a domain expert [16, 17]. For example, for the example dataset, we
can select ’First Name’ as the sorting key. As the LSH blocks are formed by the
random permutation of elements, the common elements of the records in block
Bi may be different from those in another block Bj . Using a predefined fixed
sorting key may result in a whole block being returned as query results, which
will fail to return a sub-set of records in a block. On the other hand, we can
select the sorting key adaptively for each LSH block Bi individually.

One or several attributes can be selected as sorting key. For a block Bi, a
good sorting key should divide the records into small sub-blocks. Thus, we can
select those attributes that have a greater number of unique values in γ records.
Moreover, if the attribute value occurrences are uniformly distributed, we can get
sub-blocks with the same or similar sizes. Thus, for an attribute aj , we calculate
a sorting key selection weight wj , which consists of the linear combination of
two components: attribute cardinality weight and distribution weight:

wj = α · nj

γ
+ (1− α) · σj (2)

Where 0 ≤ α ≤ 1, and nj is the number of unique values of attribute aj
in block Bi.

nj

γ measures the attribute cardinality weight, 0 ≤ nj

γ ≤ 1. σj

measures the distribution of occurrences of each unique value of aj , calculated
as the standard deviation of the occurrences of the value of aj . Let ojc denote
the occurrence of attribute value vjc in γ records, ma denote the maximum
occurrence, ma = maxb∈[1,K](ojb),where K is the number of unique attribute
values of attribute j in γ records, mi denotes the minimum occurrence, mi =

minb∈[1,K]. To get a normalized weight between 0 and 1, we set njc =
ojc−mi

ma−mi
,

thus, σj = 1
K

√
ΣK

c=1(njc − µ)2), where µ is the average value of njc for aj ,

µ =
ΣK

c=1ojc
K .

The attribute aj that has the largest wj will be selected as the sorting key.
Let sk denote a selected sorting key for Bi, then the B+ tree is built by sorting
the records in Bi on key sk. For text records, we can sort them lexically by the
alphabetic order of the sorting key. One advantage of sorting by alphabetic order
is that such an ordering is a global unique order for all the attribute values of the
sorting key in Bi. The distance of any two attribute values of the sorting key can
be measured by the distance of their alphabetic order. Thus, for a query record,
a set of nearest neighbors can be obtained through measuring their alphabetic
order distance. Each unique sorting key value denoted as vsk is one node of the
B+ tree. Each node is an inverted index that points to the records that have
the same vsk, denoted as dti = (vsk, I(vsk)), where vsk is an attribute value of
sk, and I(vsk) is the set of records that have the same vsk. Let |Bi| denote the
number of records in a block Bi, the time complexity of searching, insertion and
deletion of B+ tree is O(log |Bi|), which is quicker than scanning all the records
in a block, O(log |Bi|) < O(|Bi|), for large blocks.

Selecting Nearest Neighbors. Every record in a block Bi can be selected as
a candidate record for query record qi. However, for those blocks that have a
large number of records, we can select a set of nearest neighbors as candidate
records to reduce the query time. For a given query record qi, we firstly insert
it into the B+ tree of a LSH block based on the alphabetic order of the block’s
sorting key sk. Then the nearest neighbor nodes of the B+ tree will be selected
as the candidate records for this query record. Let vi,sk denote the sorting key
value of query record qi, we choose zr nodes that are greater than vi,sk and zl
nodes that are smaller than vi,sk to form the nearest neighbor nodes of vi,sk,
0 ≤ zl + zr ≤ |Bi|. How to set the zl and zr value is important.

If we set zl and zr=0, then only those records with the exact same value as
the query record will be selected. If zl or zr = |Bi|, then all the records of Bi

will be selected. As the distance of two nodes in a sorting B+ tree reflects the
distance of two records, we set a distance threshold θ of two nodes. Let vi,sk
denote the attribute value of sorting key sk for query record qi. For a node vj,sk
of a given B+ tree, let D(vi,sk, vj,sk) denote the distance of vi,sk and vj,sk for a
given distance measure D (e.g., edit distance [1]). If the distance of two nodes
is less than θ, then we increase the window size to include node vj,sk inside the
window. Thus, we firstly set zl and zr = 0. The window size expansion is along
both directions [16] (i.e., greater than or smaller than the query record node i)
of the B+ tree. For each direction, we expand the window size (i.e., zl or zr)
and include neighbor node j, if D(vi,sk, vj,sk) < θ, with 0 ≤ θ ≤ 1.

To further decrease the number of candidate records and select a smaller
set of nearest neighbors, we count the collision number of each record of the
neighboring nodes inside the window of the sorting tree in all l LSH blocks
to rank the records that are attached to the selected neighboring nodes. This

is because the co-occurrence of a record rx that appears together with qi in
the LSH blocks reflects the similarity of the two records [14]. The higher the
co-occurrence is, the more similar the two records are. We set a threshold φ
to select those records that appear at least φ times with the query record qi
together in LSH blocks. Let gix denote the co-occurrence of record rx and query
record qi. Let Nvi,sk denote the nearest neighbor record set of query record qi
in block Bi. For each record rx of the neighbor node j inside the window of the
sorting tree DSTi(i.e., rx ∈ I(vj,sk)), we add rx to Nvi,sk if gix > φ, 0 ≤ φ ≤l.

[Example 3] (Dynamic sorting tree) Figure 2(c) shows the dynamic sorting
tree DST3 2 for block 3 2. DST3 2 is sorted by attribute ’First Name’. Through
setting window size parameters, we can get a set of nearest neighbor records
for a query record. For example, if we set zr = 0, no records will be selected as
candidate records, and only the records with node value ’Tonny’ will be selected.
Assume θ = 0.6, φ = 1, the Jaccard similarity of the bi-grams of ’Tony’ and
’Tonny’ is 0.75 and that of the bi-grams of ’Tonny’ and ’Yong’ is 0.167. Thus,
we can set zl = 0 and zr = 1 for DST3 2. Record r1 appears twice together with
query record r4 in blocks 3 2 and 1 6, thus r1 is selected.

4.3 Real-time Entity Resolution

For a query record qi, we can obtain the nearest neighbor records that are being
allocated in the same block with qi as the candidate records. Then, we can
conduct pair-wise comparisons for all candidate records with the query record qi.
We use the Jaccard similarity of the n-grams of a candidate record and the query
record, or other appropriate approximate distance/similarity measures to rank
their similarity [1]. Let Cqi denote the candidate record set, for each candidate
record rj ∈ Cqi and query record qi ∈ Q, the similarity can be calculated with
sim(qi, rj) = J(qi, rj). The top N candidate records will be returned as the
query results Lqi . The algorithm is shown as Algorithm 1.

5 Experiments and Results

5.1 Data Preparation

To evaluate the proposed approach, we conducted experiments on the following
two datasets.
1) Australian Telephone Directory [5] (named OZ dataset). It contains first
name, last name, suburb, and postcode, and is sourced from an Australian tele-
phone directory from 2002 (Australia On Disc). This dataset was modified by
introducing various typographical and other variations to simulate real ‘noisy’
data. To allow us to evaluate scalability, we generated three sub-sets of this
dataset. The smallest dataset (named OZ-Small) has 34,596 records, the medium
sized dataset (OZ-Median) has 345,996 records, and the largest dataset (OZ-
Large) has 3,458,758 records. All three datasets have the same features including
similarity distribution, duplicate percentages (i.e., 25%) and modification types.

Algorithm 1: Query(qi,Hk,l, N)
Input:
- qi ∈ Q is a given query record
- Hk,l is a given LSH blocking schema
- N is a given number of returned results
Output:
- Lqi

is the ranked list of retrieved records

1: Lqi
← {}, Cqi

← {} // Initialization, Cqi
is the candidate records set

2: Bqi
← Hk,l(gram(qi, n) // Conduct LSH blocking for the n-grams of qi

3: For each block Bbid ∈ Bqi
:

4: If |Bbid| < γ:
5: Cqi

← Cqi

∪
Bbid // Get all records in Bbid as candidate records

6: If |Bbid| = γ: // Build sorting tree and select nearest neighbor records. See Section 4.2.
7: Get sorting key sk
8: Build dynamic sorting tree DSTbid

9: Get nearest neighbours Nvi,sk

10: Cqi
← Cqi

∪
Nvi,sk

11: If |Bbid| > γ: // Select nearest neighbor records. See Section 4.2.
12: Insert qi to DSTbid

13: Get nearest neighbours Nvi,sk

14: Cqi
← Cqi

∪
Nvi,sk

15: For each candidate record rj ∈ Cqi
, rj ̸= qi:

16: Get sim(qi, rj) // Conduct pair-wise similarity comparisons
17: Lqi

← max{Cqi
, N} // Return top N ranked results

2) North Carolina Voter Registration Dataset (i.e., NC dataset). This
dataset is a large real-world voter registration database from North Carolina
(NC) in the USA [18]. We downloaded this database every two months since Oc-
tober 2011. The attributes used in our experiments are: first name, last name,
city, and zip code. The entity identification is the unique voter registration num-
ber. This data set contains 2,567,642 records. There are 263,974 individuals
(identified by their voter registration numbers) with two records, 15,093 with
three records, and 662 with four records.

5.2 Evaluation Approaches

In the experiments, we employ the commonly used Recall, Memory Cost and
Query Time to measure the effectiveness and efficiency of real-time top N entity
resolution approach [1]. We divided each dataset into a training (i.e., building)
and a test (i.e., query) set. Each test dataset contains 50% of the whole dataset.
For each test query record, the entity resolution approach will generate a list of
ordered result records. The top N records (with the highest rank scores) will be
selected as the query results. If a record in the results list has the same entity
identification as the test query record, then this record is counted as a hit (i.e.,
an estimated true match). The Recall value is calculated as the ratio of the
total number of hits of all the test queries to the total number of true matches
in the test query set. We conducted comparison experiments with three other
state-of-the-art methods as described below. All methods were implemented in
Python, and the experiments were conducted on a server with 128 GBytes of
main memory and two 6-core Intel Xeon CPUs running at 2.4 GHz.

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e

n=2
n=3
n=4
n=0(Exact Value)

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.2

0.4

0.6

0.8

1.0

C
o
ll
is
io

n
 P

ro
b
a
b
il
it
y k=1

k=2
k=3
k=4
k=5
k=6
k=7
k=8

Fig. 3. The similarity distribution of vari-
ous n values, and the collision probability
of various k values with l=30 for OZ-Large

0 100 200 300 400 500
0.60
0.65
0.70
0.75
0.80
0.85

R
e
c
a
ll

0 100 200 300 400 500
0

5

10

15

20

25

T
im

e
(m

s
e
c
)

0 100 200 300 400 500
23000
24000
25000
26000
27000
28000
29000
30000

M
e
m
o
ry
(M

B
)

Fig. 4. Top N=10 results of NAB with var-
ious γ values for the OZ-Large, with the
x-axis showing values for γ

– NAB : This is the proposed noise-tolerant approximate blocking approach
that includes LSH and dynamic sorting trees.

– DCC : This is a locality sensitive hashing approach that uses dynamic colli-
sion counting [14] approach. It uses a base of length 1 basic hash functions.

– LSH : This is the basic LSH approach. It scans the data points in each block
and conducts pair-wise comparison for all the records inside the blocks.

– SAI : This approach pre-calculates the similarity of attribute values to de-
crease the number of comparisons at query time [5, 6].

5.3 Parameter Setting

We firstly discuss the parameter setting for the OZ datasets. To set the parame-
ters k and l, we calculated the Jaccard similarity distribution of the exact values
and n-grams with n=2, 3, 4 of the true matched records of the training sets.
The similarity distribution is shown in Figure 3. The Jaccard similarity of 90%
of the exact values of the true matched records is zero. This means that it would
be very difficult to find true matched records if we use the exact value of the
records. Also, the similarity range of the majority (i.e., 95%) of the 2-grams of
the true matched records is between 0.3 and 0.7. Thus, using an n-gram based
approach can help to find those true matched records that contain small varia-
tions or errors. n is therefore set to 2 in the experiments. Figure 3 also shows
the collision probability of various k values with l=30. We set k=4 and l=30
for the NAB approach to let most true matched records have a higher collision
probability. To get a similar collision probability, we set k=4 and l=30 for the
LSH approach, and k=1 and l=20 for the DCC approach. The settings of the
other parameters of the NAB approach are α=0.5, θ=2, φ=0.1.

Figure 4 shows the top N=10 evaluation of NAB for the OZ-Large dataset
with various γ value. With various γ value, recall remains stable while average
query time is increasing, with the increase of γ. This shows that building dynamic

OZ-Small OZ-Median OZ-Large NC
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NAB
LSH
DCC
SAI

(a) Recall

OZ-Small OZ-Median OZ-Large NC
10-3

10-2

10-1

NAB
LSH
DCC
SAI

(b) Time (sec)

OZ-Small OZ-Median OZ-Large NC102

103

104

105

NAB
LSH
DCC
SAI

(c) Memory Usage (MB)

Fig. 5. The top N=10 Recall, Average Query Time and Memory Usage results

sorting trees inside LSH blocks can help to decrease the query time through
selecting a small number of nearest neighbor records as candidate records. A
small γ value (e.g., γ=20) will not necessarily decrease the average query time,
as the building of trees also takes time and space. When γ is set to a large value
(e.g., γ=500), the average query time increases because scanning and comparing
a large number of candidate records is time consuming. We set γ=200. For the
NC dataset, we set n=3, k=2, l=20 for LSH and NAB, and k=1, l=10 for DCC.
The other parameters for NAB are the same as with the OZ datasets.

5.4 Comparison with Baseline Models

The performances of the compared approaches are shown in Figure 5. To elimi-
nate the influence of random permutation, the LSH based approaches LSH, DCC
and NAB were run three times. The average query time and memory usage are
shown on a logarithmic scale. From Figure 5 we can see that SAI achieved good
recall value for OZ-Small and NC data but low recall for OZ-Large. The LSH
based approaches (LSH, DCC and NAB) had higher recall than SAI. This can
be explained that these approaches can capture the common elements (i.e., n-
grams) of the attribute values to deal with the noise of the data. Moreover,
through controlling the k and l value, these approaches can filter out the records
that have lower similarities with the query record. DCC had very low memory
usage but high average query time. NAB had slightly lower recall and higher
memory usage than that of LSH, but with the help of dynamic sorting trees, the
average query time (e.g., 8 msec for OZ-Large) is much lower than LSH (e.g., 0.1
sec for OZ-Large). Thus, NAB can be effectively and efficiently used for large
scale real-time entity resolution, especially for noisy data.

6 Conclusions

We discussed a noise-tolerant approximate blocking approach to facilitate real-
time large scaled entity resolution. To deal with noise, we use an LSH approach
to group records into blocks with various distance ranges based on the Jaccard

similarity of their n-grams. Moreover, we propose to build dynamic sorting trees
inside large-sized LSH blocks. Through controlling the window size, we select a
small set of nearest neighbors with various approximate similarity ranges to be
noise-tolerant. Experiments conducted on both synthetic and real-world large
scaled datasets demonstrates the effectiveness of the proposed approach. Our
future work will focus on how to conduct adaptive real-time entity resolution.

Acknowledgements

The authors would like to thank the great help of Professor David Hawking.

References

1. Christen, P.: Data Matching. Data-Centric Systems and Appl. Springer (2012)
2. Christen, P., Gayler, R.W.: Adaptive temporal entity resolution on dynamic

databases. In: PAKDD. (2013) 558–569
3. Lange, D., Naumann, F.: Cost-aware query planning for similarity search. Infor-

mation Systems (2012) 455–469
4. Bhattacharya, I., Getoor, L., Licamele, L.: Query-time entity resolution. In:

SIGKDD. (2006) 529–534
5. Christen, P., Gayler, R., Hawking, D.: Similarity-aware indexing for real-time

entity resolution. In: CIKM. (2009) 1565–1568
6. Ramadan, B., Christen, P., Liang, H., Gayler, R., Hawking, D.: Dynamic similarity-

aware inverted indexing for real-time entity resolution. In: PAKDD workshops.
Volume LNCS Vol.7868., Springer (2013) 47–58

7. Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via
hashing. In: VLDB. (1999) 518–529

8. Kim, H.S., Lee, D.: HARRA: fast iterative hashed record linkage for large-scale
data collections. In: EDBT. (2010) 525–536

9. Bawa, M., Condie, T., Ganesan, P.: LSH forest: self-tuning indexes for similarity
search. In: WWW. (2005) 651–660

10. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient
indexing for high-dimensional similarity search. In: VLDB. (2007) 950–961

11. Das Sarma, A., Jain, A., Machanavajjhala, A., Bohannon, P.: An automatic block-
ing mechanism for large-scale de-duplication tasks. In: CIKM. (2012) 1055–1064

12. Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B.: Scene: a scalable two-stage
personalized news recommendation system. In: SIGIR. (2011) 125–134

13. Anand, R., Ullman, J.D.: Mining of massive datasets. Cambridge University Press
(2011)

14. Gan, J., Feng, J., Fang, Q., Ng, W.: Locality-sensitive hashing scheme based on
dynamic collision counting. In: SIGMOD. (2012) 541–552

15. Michelson, M., Knoblock, C.A.: Learning blocking schemes for record linkage. In:
AAAI. (2006) 440–445

16. Yan, S., Lee, D., Kan, M.Y., Giles, L.C.: Adaptive sorted neighborhood methods
for efficient record linkage. In: DL. (2007) 185–194

17. Draisbach, U., Naumann, F., Szott, S., Wonneberg, O.: Adaptive windows for
duplicate detection. In: ICDE. (2012) 1073–1083

18. Christen, P.: Preparation of a real voter data set for record linkage and duplicate
detection research. Technical report, Australian National University (2013)

