9,459 research outputs found

    Locality Estimates for Quantum Spin Systems

    Full text link
    We review some recent results that express or rely on the locality properties of the dynamics of quantum spin systems. In particular, we present a slightly sharper version of the recently obtained Lieb-Robinson bound on the group velocity for such systems on a large class of metric graphs. Using this bound we provide expressions of the quasi-locality of the dynamics in various forms, present a proof of the Exponential Clustering Theorem, and discuss a multi-dimensional Lieb-Schultz-Mattis Theorem.Comment: Contribution for the proceedings of ICMP XV, Rio de Janeiro, 200

    Enrichment Procedures for Soft Clusters: A Statistical Test and its Applications

    Get PDF
    Clusters, typically mined by modeling locality of attribute spaces, are often evaluated for their ability to demonstrate ā€˜enrichmentā€™ of categorical features. A cluster enrichment procedure evaluates the membership of a cluster for significant representation in pre-defined categories of interest. While classical enrichment procedures assume a hard clustering deļ¬nition, in this paper we introduce a new statistical test that computes enrichments for soft clusters. We demonstrate an application of this test in reļ¬ning and evaluating soft clusters for classification of remotely sensed images

    Dynamics and the Emergence of Geometry in an Information Mesh

    Full text link
    The idea of a graph theoretical approach to modeling the emergence of a quantized geometry and consequently spacetime, has been proposed previously, but not well studied. In most approaches the focus has been upon how to generate a spacetime that possesses properties that would be desirable at the continuum limit, and the question of how to model matter and its dynamics has not been directly addressed. Recent advances in network science have yielded new approaches to the mechanism by which spacetime can emerge as the ground state of a simple Hamiltonian, based upon a multi-dimensional Ising model with one dimensionless coupling constant. Extensions to this model have been proposed that improve the ground state geometry, but they require additional coupling constants. In this paper we conduct an extensive exploration of the graph properties of the ground states of these models, and a simplification requiring only one coupling constant. We demonstrate that the simplification is effective at producing an acceptable ground state. Moreover we propose a scheme for the inclusion of matter and dynamics as excitations above the ground state of the simplified Hamiltonian. Intriguingly, enforcing locality has the consequence of reproducing the free non-relativistic dynamics of a quantum particle
    • ā€¦
    corecore