8,277 research outputs found

    Partial unfolding for compositional nonblocking verification of extended finite-state machines

    Get PDF
    This working paper describes a framework for compositional nonblocking veriļ¬cation of reactive systems modelled as extended ļ¬nite-state machines. The nonblocking property can capture the absence of livelocks and deadlocks in concurrent systems. Compositional veriļ¬cation is shown in previous work to be effective to verify this property for large discrete event systems. Here, these results are applied to extended ļ¬nite-state machines communicating via shared memory. The model to be veriļ¬ed is composed gradually, simplifying components through abstraction at each step, while conļ¬‚ict equivalence guarantees that the ļ¬nal veriļ¬cation result is the same as it would have been for the non-abstracted model. The working paper concludes with an example showing the potential of compositional veriļ¬cation to achieve substantial state-space reduction

    Compositional Verification for Timed Systems Based on Automatic Invariant Generation

    Full text link
    We propose a method for compositional verification to address the state space explosion problem inherent to model-checking timed systems with a large number of components. The main challenge is to obtain pertinent global timing constraints from the timings in the components alone. To this end, we make use of auxiliary clocks to automatically generate new invariants which capture the constraints induced by the synchronisations between components. The method has been implemented in the RTD-Finder tool and successfully experimented on several benchmarks

    Abstraction and Learning for Infinite-State Compositional Verification

    Full text link
    Despite many advances that enable the application of model checking techniques to the verification of large systems, the state-explosion problem remains the main challenge for scalability. Compositional verification addresses this challenge by decomposing the verification of a large system into the verification of its components. Recent techniques use learning-based approaches to automate compositional verification based on the assume-guarantee style reasoning. However, these techniques are only applicable to finite-state systems. In this work, we propose a new framework that interleaves abstraction and learning to perform automated compositional verification of infinite-state systems. We also discuss the role of learning and abstraction in the related context of interface generation for infinite-state components.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    The language of certain conflicts of a nondeterministic process

    Get PDF
    The language of certain conflicts is the most general set of behaviours of a nondeterministic process, which certainly lead to a livelock or deadlock when accepted by another process running in parallel. It is of great use in model checking to detect livelocks or deadlocks in very large systems, and in process-algebra to obtain abstractions preserving livelock and deadlock. Unfortunately, the language of certain conflicts is difficult to compute and has only been approximated in previous work. This paper presents an effective algorithm to calculate the language of certain conflicts for any given nondeterministic finite-state process and discusses its properties. The algorithm is shown to be correct and of exponential complexity
    • ā€¦
    corecore