
Working Paper Series
ISSN 1177-777X

THE LANGUAGE OF CERTAIN CONFLICTS

OF A NONDETERMINISTIC PROCESS

Robi Malik

Working Paper: 05/2010
July 7, 2010

c©Robi Malik

Department of Computer Science
The University of Waikato

Private Bag 3105
Hamilton, 3240
New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29197967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Language of Certain Conflicts

of a Nondeterministic Process

Robi Malik
Department of Computer Science

University of Waikato
Hamilton, New Zealand
robi@cs.waikato.ac.nz

July 7, 2010

Abstract

The language of certain conflicts is the most general set of be-
haviours of a nondeterministic process, which certainly lead to a live-
lock or deadlock when accepted by another process running in parallel.
It is of great use in model checking to detect livelocks or deadlocks in
very large systems, and in process-algebra to obtain abstractions pre-
serving livelock and deadlock. Unfortunately, the language of certain
conflicts is difficult to compute and has only been approximated in
previous work. This paper presents an effective algorithm to calculate
the language of certain conflicts for any given nondeterministic finite-
state process and discusses its properties. The algorithm is shown to
be correct and of exponential complexity.

1 Introduction

Blocking or conflicts are common faults in concurrent programs that can
be very subtle and hard to detect. This includes both the possibility of
deadlock, where processes are stuck and unable to continue at all, and live-
lock, where processes continue to run forever without achieving any further
progress. Conflicts have long been studied in the field of discrete event
systems [8, 22], which is applied to modelling of complex safety-critical sys-
tems [4, 5]. To improve the reliability of such systems, techniques are needed
to detect the presence or verify the absence of conflicts in models of an ever
increasing size.

1

In discrete-events theory [8, 22], the absence of conflicts is formalised
using the nonblocking property, which is used very successfully for synthe-
sis [8, 22]. A lot of research has been conducted to study the compositional
semantics [15, 17] of nonblocking and its verification [11, 20]. Existing model
checking techniques [10] can be used to verify nonblocking, but they are lim-
ited by the state space explosion problem.

Alternatives to mitigate this problem include incremental or modular
verification, which attempt to find properties of a large system by analysing
only certain parts of it, or compositional verification, where individual sys-
tem components are abstracted or simplified before or while being composed.
Such techniques are very effective for safety properties [1, 6, 2]; deadlock-
preserving abstractions [12] and more general temporal logic properties [10]
have also been considered.

Unfortunately, most standard abstraction techniques do not preserve the
nonconflicting property, and only more recently compositional verification
has been used successfully to verify nonconflicting [11]. While these results
look very promising, it is still difficult to find good conflict-preserving ab-
stractions, and several questions remain open. One powerful abstraction
relies on the language or set of certain conflicts [16], which is the most gen-
eral set of traces of a subsystem that are guaranteed to cause blocking in
any environment. If traces of certain conflicts are detected early, this can
considerably reduce the efforts of verification.

The set of certain conflicts is shown in [17] to be the one distinguishing
feature that separates conflict equivalence from fair testing [7, 19]. In [16],
the set of certain conflicts is used to detect conflicts in large systems of
synchronised processes, and this idea is further extended in [11] to compute
conflict-preserving abstractions. However, the existing works do not calcu-
late the set of certain conflicts accurately, and only use approximations that
are easy to compute.

This paper discusses an algorithm to compute the set of certain conflicts
accurately for any nondeterministic process. Section 2 summarises neces-
sary notation from automata theory and process-algebra. Then section 3
introduces the language of certain conflicts with some of its properties, and
section 4 presents a fixed-point algorithm to compute it for any given finite-
state machine, and proves the correctness of this algorithm. Afterwards,
section 5 shows how the results can be used to simplify nondeterministic
processes in a conflict-preserving way, and section 6 adds some concluding
remarks.

2

2 Notation and Preliminaries

This section introduces the notations used throughout this paper. Pro-
cesses are represented as labelled transition systems, with the possibility
of nondeterminism, which naturally arises from abstraction and hiding op-
erations [13, 18, 23]. Process behaviour is described using languages, with
notations taken from the background of discrete event systems and automata
theory [22, 14].

2.1 Alphabets and Languages

Traces and languages are a simple means to describe process behaviours.
Their basic building blocks are actions, which are taken from a finite alpha-
bet A. Two special actions are used, the silent action τ and the termination
action ω. These are never included in an alphabet A unless mentioned
explicitly. To include them, Aω = A∪{ω} and Aω,τ = A∪{ω, τ} are used.

A∗ denotes the set of all finite strings or traces of the form α1α2 . . . αk of
actions from A, including the empty trace ε. A language over A is any subset
L ⊆ A∗. The concatenation of two traces s, t ∈ A∗ is written as st. Traces,
alphabets, and languages can also be catenated, e.g., sL = { st | t ∈ L}.
Trace s is a prefix of t, denoted s ⊑ t, if there exists a trace u such that
t = su. The prefix-closure L of a language L ⊆ A∗

ω,τ is the set of all prefixes

of traces in L, i.e., L = { s ∈ A∗
ω,τ | s ⊑ t for some t ∈ L}. A language L is

prefix-closed if L = L.

2.2 Processes

In the context of this paper, processes are modelled as nondeterministic
labelled transition systems P = 〈A, Q,→, Q◦〉, where A is the alphabet of
actions, Q is the set of states, → ⊆ Q ×Aω,τ ×Q is the transition relation,
and Q◦ ⊆ Q is the (possibly empty) set of initial states.

The transition relation is written in infix notation x
α
→ y, and it is

extended to traces in A∗
ω,τ by letting x

ε
→ x for all x ∈ Q and x

sα
→ z if

x
s
→ y

α
→ z for some state y ∈ Q. For state sets Q1, Q2 ⊆ Q, the notation

Q1
s
→ Q2 denotes the existence of x1 ∈ Q1 and x2 ∈ Q2 such that x1

s
→ x2.

Also, x → y denotes the existence of a trace s ∈ A∗
ω,τ such that x

s
→ y, and

x
s
→ denotes the existence of a state y ∈ Q such that x

s
→ y.

Processes use the termination action ω to indicate successful termination,
and the transition relation must satisfy the additional requirement that,

3

whenever x
ω
→ y, it does not hold that y →. The traditional set of marked

or terminal states [14] then can be defined as Qω = {x ∈ Q | x
ω
→}.

To support hiding of silent actions, another transition relation ⇒ ⊆
Q × A∗

ω × Q is introduced, where x
s
⇒ y denotes the existence of a trace

s′ ∈ A∗
ω,τ such that x

s′
→ y and s is obtained from s′ by removing all silent

(τ) actions. Notations such as Q1
s
⇒ Q2, x ⇒ y, and x

s
⇒ are defined

analogously to →.
The set of all processes with action alphabet A is denoted by ΠA. The

transition relation is also defined for processes, denoting by P
s
⇒ P ′ that

process P ∈ ΠA evolves into P ′ ∈ ΠA by executing actions s ∈ A∗
ω. This

is defined as 〈A, Q,→, Q◦〉
s
⇒ (A, Q,→, {x}) for each x ∈ Q such that

Q◦ s
⇒ x. The notation P

s
⇒ means that P

s
⇒ P ′ for some P ′ ∈ ΠA.

The possible behaviours of a process are defined by the set of traces it
can execute. The language L(P) and the success language M(P) of P ∈ ΠA

are

L(P) = { s ∈ A∗ ∪ A∗ω | P
s
⇒} and (1)

M(P) = { s ∈ A∗ω | P
s
⇒} . (2)

L(P) contains all complete or incomplete traces that can be executed by
a process. This is a prefix-closed language. In contrast, M(P) contains
only traces ending with ω, i.e., only those traces that lead to successful
termination.

A process P = 〈A, Q,→, Q◦〉 is deterministic if it has at most one ini-
tial state, i.e., |Q◦| ≤ 1, if x

α
→ y1 and x

α
→ y2 always implies y1 = y2,

and if P has no transitions labelled τ . Given a possibly nondeterminis-
tic process P , the well-known subset construction can be used to obtain a
language-equivalent deterministic process [14]. More precisely,

det(P) = 〈A, P(Q),→det, {Q
◦} \ {∅}〉 , (3)

where X
α
→det Y for X, Y ⊆ Q if and only if Y = { y ∈ Q | X

α
⇒ y }

and Y 6= ∅, is a deterministic process such that L(det(P)) = L(P) and
M(det(P)) = M(P).

2.3 Synchronous Product

When several processes are running in parallel, lock-step synchronisation
in the style of [13] is used. The synchronous product P1 ‖ P2 of two pro-
cesses P1 = 〈A, Q1,→1, Q

◦
1〉 and P2 = 〈A, Q2,→2, Q

◦
2〉 both using the action

4

alphabet A, is

P1 ‖ P2 = 〈A, Q1 × Q2,→, Q◦
1 × Q◦

2〉 (4)

where

• (x1, x2)
α
→ (y1, y2), if α ∈ Aω, x1

α
→1 y1, x2

α
→2 y2;

• (x1, x2)
τ
→ (y1, x2), if x1

τ
→1 y1;

• (x1, x2)
τ
→ (x1, y2), if x2

τ
→2 y2.

It is a well-known property of synchronous composition that the language of
the synchronous product is the intersection of the languages of the composed
processes, i.e., L(P1 ‖ P2) = L(P1) ∩ L(P2) and M(P1 ‖ P2) = M(P1) ∩
M(P2) [22].

2.4 Conflicts

Given a process P ∈ ΠA, it is desirable that every trace in L(P) can be
completed to a trace in M(P), otherwise P may become unable to termi-
nate. In discrete event systems theory, a process that may become unable
to terminate is called blocking. This concept becomes more interesting when
several processes are running in parallel—in this case the term conflicting is
used instead [22, 17].

Definition 1 A process P ∈ ΠA is nonblocking, if for every trace s ∈ A∗

and every P ′ ∈ ΠA such that P
s
⇒ P ′, there exists a continuation t ∈ A∗

such that P ′ tω
⇒. Otherwise P is blocking.

Definition 2 Two processes P1, P2 ∈ ΠA are nonconflicting if P1 ‖ P2 is
nonblocking. Otherwise they are conflicting.

In order to be nonblocking, or nonconflicting, it is sufficient that a termi-
nal state can be reached in every possible situation. For finite-state systems,
this is equivalent to termination under an implicit strong fairness assump-
tion stating that “whenever a transition can occur infinitely often, it occurs
infinitely often” [3].

Example 1 Consider the two processes in Fig. 1. For the sake of graph-
ical simplicity, terminal states, i.e., states with outgoing ω-transitions, are
shaded in the figures of this paper instead of explicitly showing ω-transitions.

5

PSfrag

cmd

cmd

cmd

reset resetreset reset

timeouttimer

runini tim res

cmdcmd

reset
timeout

timer

idl run

Fig. 1: Two example processes.

Both processes in this example are nonblocking. Although both can theo-
retically execute an infinite sequence of cmd actions from their run states
without ever terminating, strong fairness requires that other transitions are
taken eventually, leading the system to a terminal state.

In spite of the apparent simplicity of the concept, conflicts are difficult
to analyse in a modular way [25]. For purposes of model checking [9, 10],
the property of two processes being nonconflicting can be expressed by a
CTL formula such as

AGEF terminal state, (5)

where terminal state is a propositional formula identifying the states in
which both processes are in their terminal states. This formula is neither
in ∀CTL∗ nor in ∃CTL∗, which explains why many known abstraction tech-
niques [10] cannot be used for this kind of property.

3 The Language of Certain Conflicts

An objective of this research is to find efficient algorithms to determine
whether a large system of concurrent processes is blocking or not. The
straightforward approach to do this is to construct and examine a syn-
chronous product such as

P1 ‖ P2 ‖ · · · ‖ Pn . (6)

The check is done by exploring all reachable states and checking whether a
terminal state can be reached from every reachable state. This can be done
using CTL model checking, and models of substantial size can be analysed
if the state space is represented symbolically [10]. Yet, the technique always
remains limited by the amount of memory available to store representations
of the synchronous product.

6

cmd

cmd

cmd

cmd

τ

ττ

(ini, idl) (tim, idl)(run, run)

(run, idl)

(res, idl)

Fig. 2: The synchronous product of the automata in Fig. 1, after hiding the
actions timer, timeout, and reset.

As an alternative that avoids the full construction of the synchronous
product, incremental or modular verification try to analyse parts of the
system (6) and make conclusions about properties of the entire system. This
approach works well for safety properties [1, 6, 2], but it is problematic for
nonblocking.

Example 2 The processes in Fig. 1 are part of a large central locking
system [16], and these are the only components using the actions timer,
timeout, and reset. Therefore, in a first step to analyse the system, the two
processes are composed, and the now local actions are hidden, i.e., replaced
by τ . Figure 2 shows the synchronous product of the two processes in
Fig. 1 after hiding these actions. Although each of the processes composed
is nonblocking on its own, their synchronous product is blocking, because no
terminal state can be reached from state (run, idl). Thus, the central locking
system includes a blocking subsystem. But this does not necessarily mean
that the entire system is blocking. Some other component may disable the
action cmd and thereby remove the problem.

Although the presence of a blocking subsystem does not necessarily mean
that the entire system is blocking, a blocking subsystem can still be used
to detect blocking in certain cases [16]. If it can be shown in the above
example that all components of the system can execute the action cmd, this
is enough to enable the process in Fig. 2 to reach state (run, idl), so the
composed system is blocking.

Therefore, trace cmd is considered as a trace of certain conflicts for
Fig. 2. Any system that is to be nonconflicting with this process has to
prevent cmd from occurring. The following definition first appears in [16].

7

Definition 3 For P ∈ ΠA, write

Conf(P) = { s ∈ A∗
ω | For every T ∈ ΠA such that T

s
⇒, P ‖ T is

blocking } ;
(7)

NConf(P) = { s ∈ A∗
ω | There exists T ∈ ΠA such that T

s
⇒ and

P ‖ T is nonblocking } .
(8)

Conf(P) is the set of certain conflicts of P . It contains all traces that,
when possible in the environment, necessarily cause blocking. Its comple-
ment NConf(P) is the most general behaviour of processes that are to be
nonconflicting with P . Clearly, if P is nonblocking, then Conf(P) = ∅ and
NConf(P) = A∗

ω. The set of certain conflicts becomes more interesting for
blocking processes.

Example 3 Let P be the process in Fig. 2. If P is composed with any
system that can ever execute action cmd, then P may silently enter the
state (run, idl) and thus prevent the entire system from ever reaching a
terminal state. Therefore, Conf(P) = cmdA∗

ω.

The set of certain conflicts is introduced in [16], where it is used in com-
bination with an incremental language inclusion check [6] to detect conflicts
in large systems of synchronised processes. Its relationship to conflict equiv-
alence is discussed in [17, 11]. The remainder of this section explains some
additional properties of the set of certain conflicts.

Even if a process is nondeterministic, its set of certain conflicts is a
language. If one trace can lead a process to a blocking state, that trace
needs to be disabled to prevent blocking. It is a trace of certain conflicts,
no matter how many other nonblocking states can be reached by the same
trace.

The language of certain conflicts of a process P is not necessarily a
subset of its language L(P). For example, any trace that starts with cmd is
a trace of certain conflicts of the process in Fig. 2, but not all traces starting
with cmd are accepted by this process. In fact, if s is a trace of certain
conflicts, then so is any extension st. In consequence, the complement of
the set of certain conflicts, the set NConf(P), is prefix-closed.

Lemma 1 The following holds for all P ∈ ΠA:

(i) Conf(P) = Conf(P)A∗
ω;

(ii) NConf(P) = NConf(P).

8

Proof. (i) Conf(P) ⊆ Conf(P)A∗
ω is trivial. For the converse inclusion,

let s ∈ Conf(P)A∗
ω. Then there exists s′ ⊑ s such that s′ ∈ Conf(P).

To see that s ∈ Conf(P), let T ∈ ΠA such that P ‖ T
s
⇒. Then clearly

P ‖T
s′
⇒, and since s′ ∈ Conf(P), it follows that P ‖T is blocking. Since T

was chosen arbitrarily, it holds that s ∈ Conf(P).
(ii) NConf(P) ⊆ NConf(P) is trivial. For the converse inclusion, let

s ∈ NConf(P). Then there exists t ∈ A∗
ω such that st ∈ NConf(P). Thus,

st /∈ Conf(P) = Conf(P)A∗
ω by (i). It follows that s /∈ Conf(P), or

equivalently s ∈ NConf(P). �

Although the set of certain conflicts of a process P is not a subset of the
language of P , every trace of certain conflicts needs to have an explanation
in the language of P . That is, if s is a trace of certain conflicts, then there
is a prefix of s, which is accepted by P and which also is a trace of certain
conflicts.

Lemma 2 Let P ∈ ΠA. For every trace s ∈ Conf(P), there exists a prefix
s′ ⊑ s such that s′ ∈ Conf(P) ∩ L(P).

Proof. First note that, if L(P) = ∅ (i.e., P has no initial state), then
P ‖ T is nonblocking for every test T ∈ ΠA, i.e., Conf(P) = ∅. Therefore,
s ∈ Conf(P) implies L(P) 6= ∅.

Let s ∈ Conf(P), and let s′ ⊑ s be the longest prefix of s contained
in L(P), i.e., s′ ∈ L(P) and for all t ∈ L(P) such that t ⊑ s it holds that
t ⊑ s′. Such a trace s′ exists because L(P) 6= ∅ and therefore ε ∈ L(P).

It is enough to show that s′ ∈ Conf(P). Therefore, let T ∈ ΠA such

that T
s′
⇒. Construct a deterministic process Ts such that

L(Ts) = L(T) ∪ {s} and M(Ts) = M(T) . (9)

Clearly Ts
s
⇒, and since s ∈ Conf(P), it follows that P ‖ Ts is blocking.

Thus, there exists t ∈ A∗ such that P ‖Ts
t
⇒ P ′‖T ′

s and M(P ′)∩M(T ′
s) = ∅.

Note that, if t ⊑ s then also t ⊑ s′ by construction of s′ (since P
t
⇒),

and therefore T
t
⇒. It follows that P ‖ T

t
⇒ P ′ ‖ T ′ for some T ′ ∈ ΠA,

and M(T ′) = M(T ′
s) by construction of Ts. Thus, M(P ′) ∩ M(T ′) =

M(P ′) ∩M(T ′
s) = ∅, i.e, P ‖ T is blocking. Since T was chosen arbitrarily,

it follows that s′ ∈ Conf(P). �

9

4 Algorithm

While the language of certain conflicts provides a powerful tool when verify-
ing nonblocking, it is only approximated by the method in [11]. A language-
based fixpoint construction to compute the language of certain conflicts of
a deterministic process is outlined in [16], but no analysis of correctness or
complexity is given, and it is unclear how the method is applicable to non-
deterministic processes. This section develops a state-based description of
an algorithm to compute the language of certain conflicts for any finite-state
nondeterministic process, proves its correctness, and analyses its space and
time complexity.

4.1 Introduction and Example

A first approach to find the language of certain conflicts of a process is to
identify all blocking states, i.e., all the states from which no terminal state
is reachable. Any trace that leads to a blocking state definitely is a trace of
certain conflicts. But these are not the only certain conflicts.

Consider process P in Fig. 3. State 4 is blocking and all traces leading to
it, i.e., all traces in α{α, β}∗γ, are traces of certain conflicts. Furthermore,
P may enter state 7 after execution of trace ααβ, where the only possibility
to terminate is by executing action γ. This requires the execution of ααβγ,
which is a trace of certain conflicts as explained above. If some other process
accepts ααβ, in order to be nonconflicting with P , it also needs to accept
ααβγ, but by doing so it already is conflicting with P . In consequence, ααβ
also is a trace of certain conflicts.

The example also shows that the language of certain conflicts of a pro-
cess P cannot always be represented using only the states of P . Clearly,
states 4 and 7 are states of certain conflicts. This entails that the β-transition
from state 6 to 7 must be disabled to avoid certain conflicts. Thus, after
execution of trace αα, action β must be disabled. This includes the removal
of some β-transitions originating from state 1 and 2, but it needs to be dis-
tinguished whether these states have been entered by executing αα or some
other trace.

Therefore, to compute the set of certain conflicts accurately, states may
need to be split depending on the history of actions by which they have been
reached. This can be achieved using subset construction [14], by construct-
ing the synchronous product P ‖ det(P). In this way, every state of P is
paired with the set of alternative states P may be in.

This idea leads to the algorithm shown in Fig. 4. After construction of

10

P ‖det(P), all blocking states are identified and removed from the composed
process. In addition, if a composed state (r, R) is removed, where r is a
state of P and R is the set of alternative states P may be in, then all other
composed states that involve this set R of alternatives are also removed.

Consider again process P in Fig. 3. The figure also shows its determinised
version det(P) and the composition P ‖ det(P). For brevity, state sets from
subset construction are written as 123, e.g., to represent the set {1, 2, 3}.
States (4, 4) and (4, 45) are blocking in P ‖ det(P). Therefore, all state
pairs with 4 or 45 in the second component are removed in step 6 of the
algorithm. This leads to the removal of (5, 45). In consequence, (7, 157)
becomes blocking, and three more states (1, 157), (5, 157), and (7, 157) are
removed in the next iteration. The resultant process is nonblocking and can
execute only traces that are not certain conflicts. The states removed are
crossed out in the figure.

4.2 Proof of Correctness

In this section, the correctness of the algorithm in Fig. 4 is established for-
mally. This is done using a fixpoint operator that describes the intermediate
results in each step of the algorithm.

Definition 4 Let P = 〈A, Q,→, Q◦〉 and X ⊆ Q. The restriction of P
by X is

P|X = 〈A, X,→|X , Q◦ ∩ X〉 , (10)

where
→|X = { (x, α, y) | x

α
→ y and x, y ∈ X } . (11)

Definition 5 For P = 〈A, Q,→, Q◦〉, define the mapping

ΘP : P(P(Q)) → P(P(Q)); (12)

X 7→ {R ∈ X | For all r ∈ R, there exists t ∈ A∗ such that

(r, R)
tω
⇒ in P ‖ det(P)|X } .

The function ΘP operates on subsets of the state set of det(P) in a
way that captures the behaviour of the algorithm in Fig. 4. When applied
repeatedly, starting with the entire state set as follows,

X0 = P(Q) and Xi+1 = ΘP (Xi) , (13)

the process Pi in step i of the algorithm is equal to P ‖det(P)|Xi
. To answer

the question whether the iteration terminates, it is first confirmed that the
operator ΘP is monotonic.

11

P :

α

α

α

α

α

α
αβ

ββ
γ

γ

0

1

2

3

4 5

6

7

det(P):

α

α

α

α

α

α
α

β

β

β

β

β

β

γ γ

γ

γ
γ

γ

0

123

126

12

157

15

1

45

4
P0 = P ‖ det(P):

α

α

α

α

α

α

α

α
α

α

α

α

α

α

β

β

β

β
β

β

β

ββ

β

γ
γ

γ

γ

γγ

γ

(0,0)

(1,123)

(1,126)

(1,12)

(1,157)

(1,15)

(1,1)

(2,123)

(2,126) (2,12)

(3,123)

(4,45)

(4,4)

(5,157)

(5,15)

(5,45)

(6,126)

(7,157)

Fig. 3: Working example showing the computation of certain conflicts of
process P . After removal of the crossed out states, the languages of det(P)
and P ‖ det(P) both are equal to NConf(P) ∩ L(P).

12

1. Input P = 〈A, Q,→, Q◦〉.
2. Apply subset construction to obtain det(P).

3. Set i := 0 and P0 := P ‖ det(P).

(The state space of P0 consists of pairs (r, R) with r ∈ Q and R ⊆ Q.)

4. while Pi is blocking do

5. Let Bi be the set of blocking states in Pi.

6. Construct Pi+1 from Pi by removing all states (r, R) such that
(r′, R) ∈ Bi for some r′ ∈ Q.

7. Set i := i + 1.

8. end

(The language of Pi now equals NConf(P) ∩ L(P).)

Fig. 4: Algorithm to compute NConf(P) ∩ L(P).

Lemma 3 Let P = 〈A, Q,→, Q◦〉 and X, Y ⊆ Q. If X ⊆ Y then ΘP (X) ⊆
ΘP (Y).

Proof. Let X, Y ⊆ Q such that X ⊆ Y , and assume R ∈ ΘP (X). It
immediately follows that R ∈ X ⊆ Y . Furthermore, for r ∈ R, by assump-

tion R ∈ ΘP (X) there exists t ∈ A∗ such that (r, R)
tω
⇒ in P ‖ det(P)|X .

Given X ⊆ Y , it then also holds that (r, R)
tω
⇒ in P ‖det(P)|Y . This implies

R ∈ ΘP (Y). �

As ΘP is a monotonic operator on the lattice of subsets of the state
set of det(P), it follows by the Knaster-Tarski theorem [24] that ΘP has
a greatest fixpoint X̂ = gfp(ΘP). That is, X̂ is a fixpoint of ΘP , i.e.,
ΘP (X̂) = X̂, and every other fixpoint of ΘP is a subset of X̂. If the state
set is finite, the iteration (13) converges on this fixpoint in a finite number
of steps,

gfp ΘP = X̂ = Xn for some n ∈ N0 . (14)

Unfortunately, ΘP is not continuous. If the state set is infinite, the greatest
fixpoint still exists, but it may be not a limit of the sequence (13).

It is next established that the greatest fixpoint of ΘP does indeed de-
scribe the set of certain conflicts. More precisely, the greatest fixpoint X̂
satisfies

L(det(P)|X̂) = NConf(P) ∩ L(P) . (15)

To prove this result, it is not enough to follow the standard approach show
that exactly the fixpoints of ΘP lead to subsets of the language NConf(P)∩

13

L(P), because it also needs to be established that this language can be rep-
resented using a subautomaton of det(P). Still, the first step of the proof is
to establish that every fixpoint of ΘP leads to a sublanguage of NConf(P).

Lemma 4 Let P = 〈A, Q,→, Q◦〉, and let X ⊆ Q be a pre-fixpoint of ΘP ,
i.e., X ⊆ ΘP (X). Then L(det(P)|X) ⊆ NConf(P).

Proof. Let X ⊆ ΘP (X), and first note that P ‖ det(P)|X is nonblocking.

To see this, let P ‖ det(P)|X
s
⇒ (r, R). Then R ∈ X ⊆ ΘP (X) and since

P
s
⇒ r and det(P)

s
⇒ R also r ∈ R. By definition of ΘP , there exists t ∈ A∗

such that (r, R)
tω
⇒ in P ‖ det(P)|X . Therefore, P ‖ det(P)|X is nonblocking.

Now let u ∈ L(det(P)|X), According to the above, det(P)|X is a process
accepting u that is nonconflicting with P , i.e., u ∈ NConf(P). �

For the second inclusion of (15), it is proved that the iteration (13) only
produces supersets of the language NConf(P) ∩ L(P). This is done induc-
tively using the following lemma. Part (ii) is only needed for the infinite-
state case.

Lemma 5 Let P = 〈A, Q,→, Q◦〉.

(i) For X ⊆ Q, if NConf(P) ∩ L(P) ⊆ L(det(P)|X), then NConf(P) ∩
L(P) ⊆ L(det(P)|ΘP (X)).

(ii) Let (Xi)i∈I be a family of subsets of Q, and let X =
⋂

i∈I Xi. If
for each i ∈ I it holds that NConf(P) ∩ L(P) ⊆ L(det(P)|Xi

), then
NConf(P) ∩ L(P) ⊆ L(det(P)|X).

Proof. (i) Let NConf(P) ∩ L(P) ⊆ L(det(P)|X) and s ∈ NConf(P) ∩
L(P). By assumption, s ∈ L(det(P)|X). Write s = α1 . . . αn and

Q◦ = R0
α1→ R1

α2→ · · ·
αn→ Rn in det(P)|X . (16)

It is enough to show Rk ∈ ΘP (X) for k = 0, . . . , n.
To see this, first note that Rk ∈ X since det(P)|X → Rk. Second let

sk = α1 . . . αk. Then sk ⊑ s and thus

sk ∈ NConf(P) ∩ L(P) ⊆ NConf(P) = NConf(P) (17)

by lemma 1. Therefore, sk ∈ NConf(P) and there exists T ∈ ΠA such

that T
sk⇒ and P ‖ T is nonblocking. Now let r ∈ Rk. Then P ‖ T

sk⇒
(r, rT) for some state rT of T , and since P ‖ T is nonblocking, there exists

14

t ∈ A∗ such that (r, rT)
tω
⇒. Then T

sktω
=⇒ and sktω ∈ NConf(P) since

P ‖ T is nonblocking, and P
sktω
=⇒, i.e., sktω ∈ L(P). By the assumption

NConf(P)∩L(P) ⊆ L(det(P)|X), it follows that sktω ∈ L(det(P)|X). Since

det(P) is deterministic, P ‖ det(P)|X
sk⇒ (r, Rk)

tω
⇒ and thus Rk ∈ ΘP (X)

for all k = 0, . . . , n.
(ii) Let X =

⋂
i∈I Xi, and let s ∈ NConf(P) ∩ L(P) ⊆ L(det(P)|Xi

)
for each i ∈ I. Since det(P) is deterministic, there exists only one path

accepting s in det(P), say Q◦ = R0
α1→ · · ·

αn→ Rn. This path must exist
in each det(P)|Xi

, i.e., R0, . . . , Rn ∈ Xi for each i ∈ I. Then R0, . . . , Rn ∈⋂
i∈I Xi = X, which implies s ∈ L(det(P)|X). �

Proposition 6 Let P ∈ ΠA, and let X̂ = gfp ΘP . Then

L(det(P)|X̂) = NConf(P) ∩ L(P) . (18)

Proof. Since the greatest fixpoint is a pre-fixpoint of ΘP , it follows from
lemma 4 that L(det(P)|X̂) ⊆ NConf(P). Then, since L(det(P)|X̂) ⊆

L(det(P)) = L(P), it follows that L(det(P)|X̂) ⊆ NConf(P) ∩ L(P).

For the converse inclusion, given the monotonicity of ΘP (lemma 3) it
follows from the Knaster-Tarski theorem [24] that X̂ = gfpΘP = Θν

P (P(Q))
for some ordinal ν. Noting that L(det(P)|P(Q)) = L(det(P)) = L(P) ⊇
NConf(P) ∩ L(P), it follows by transfinite induction from lemma 5 that
L(det(P)|X̂) = L(det(P)|Θν

P
(P(Q))) ⊇ NConf(P) ∩ L(P). �

This confirms that the iteration (13) indeed converges in the finite-state
case and yields the language NConf(P) ∩ L(P). As this is not the actual
set of certain conflicts, the following final proposition shows how to obtain
the set of certain conflicts from the algorithm result.

Proposition 7 Let P ∈ ΠA, and let N = NConf(P) ∩ L(P). Then

Conf(P) = (L(P) \ N)A∗
ω . (19)

Proof. First, let s ∈ Conf(P). By lemma 2, there exists s′ ⊑ s such that
s′ ∈ Conf(P) ∩ L(P). Then s′ ∈ L(P) and s′ /∈ NConf(P) ⊇ N , which
implies s′ ∈ L(P) \ N and s ∈ (L(P) \ N)A∗

ω.
Second, let s ∈ (L(P) \ N)A∗

ω. Then there exists s′ ⊑ s such that
s′ ∈ L(P) \ N . Thus, s′ ∈ L(P) and s′ /∈ N = NConf(P) ∩ L(P). Since
s ∈ L(P), the latter means that s′ /∈ NConf(P), i.e., s′ ∈ Conf(P) and
therefore s ∈ Conf(P)A∗

ω = Conf(P) by lemma 1. �

15

This result implies that, after completion of the algorithm in Fig. 4, the
set of certain conflicts can be constructed directly as the set of all traces lead-
ing to states of det(P) deleted by the algorithm, plus all possible extensions
of such traces.

4.3 Complexity

This section briefly discusses the complexity of the algorithm to compute the
set of certain conflicts in the finite-state case and shows that its space and
time complexity is exponential in the number of states of the given process.
If the result is to be given as a deterministic finite-state machine, this also
is the lower limit of complexity.

Given an input process P = 〈A, Q,→, Q◦〉, the algorithm in Fig. 4
needs to search the state space of P0 = P ‖ det(P), so its space complexity
is determined by the number of states of that process. It is

O(|Q| · 2|Q|) . (20)

For the time complexity, note that each iteration in the algorithm in-
volves the computation of the set of blocking states of a restriction of
P0 = P ‖det(P). This can be done using standard graph search algorithms,
visiting all transitions of P0 at most once. For each action and each state,
there may be up to |Q| outgoing transitions in P , but at most one outgoing
transition in the deterministic process det(P). Therefore, P0 can have up to
|A||Q| outgoing transitions from each of its up to |Q| · 2|Q| states, in total
up to |A||Q|2 · 2|Q| transitions. Each iteration except the last involves the
removal of at least one state of det(P), so there can be at most 2|Q| + 1
iterations. This gives a worst-case time complexity of

O(|A| · |Q|2 · 4|Q|) . (21)

To address the question whether there can be better algorithms to com-
pute the set of certain conflicts, it is worth noting that by proposition 7
the language of certain conflicts of P can be represented as a deterministic
process using a subset of the states of det(P). Thus, the language Conf(P)
can be represented as a deterministic process with at most 2|Q| states, which
is only slightly less than (20).

On the other hand, if the process P is nonblocking then NConf(P) =
A∗

ω, so the language computed by the algorithm is NConf(P) ∩ L(P) =
L(P), and it is well-known that the worst-case for a deterministic automa-
ton accepting the same language as a given nondeterministic process P has

16

C2:
α

α α
α ββ

β
γ γ

q0 q1 q2 q3 ⊥

Fig. 5: Example to show that the language of certain conflicts may have a
smallest deterministic recogniser of exponential size.

an exponential number of states [14]. The example used to establish this
complexity bound for language determinisation can be modified to apply to
the language of certain conflicts.

Example 4 Consider a family of processes Ck = 〈A, Qk,→k, {q0}〉, k ∈ N0,
where A = {α, β, γ}, Qk = {q0, . . . , qk+1,⊥}, and →k consists of transitions

q0
σ
→k q0 for σ ∈ A; qi

α
→k qi+1 for i = 0, . . . , k; qi

β
→k qi+1 for i = 1, . . . , k;

qk+1
γ
→k ⊥; and qi

ω
→k ⊥ for i = 0, . . . , k + 1. Process C2 is shown in Fig. 5.

The set of certain conflicts of Ck is Conf(Ck) = A∗α{α, β}kγA∗
ω. That

is, certain conflicts are reached if action γ occurs when α has occurred k +1
steps before. While this language has a nondeterministic recogniser with
k + 2 states, it is known that it cannot have a deterministic recogniser with
less than 2k states [14].

This shows that an exponential number of states for deterministic rep-
resentations of the set of certain conflicts can be necessary. There may be
smaller nondeterministic representations, and it is unknown to the author
whether they are guaranteed to exist or at what computational cost they
can be found.

5 Simplifying Subsystems

This section shows one way how the language of certain conflicts in general,
and the results of the algorithm of the previous section in particular, can be
used for compositional nonblocking verification [11]. In compositional veri-
fication, parts of system of interacting components such as (6) are replaced
by a simpler, yet equivalent, process. The appropriate notion of equivalence
for nonblocking verification is conflict equivalence as introduced in [17].

Definition 6 Processes P1, P2 ∈ ΠA are called conflict equivalent, written
P1 ≃conf P2, if for every process T ∈ ΠA, it holds that P1 ‖T is nonblocking
if and only of P2 ‖ T is nonblocking.

17

The properties of conflict equivalence are discussed in [17]. The equiva-
lence is coarser than observation equivalence [18] and different from language
equivalence, failures equivalence [13] and failure trace equivalence [21, 15].
The process-algebraic equivalence most similar to it is fair testing equiva-
lence [7, 19].

Given a process P , there are several ways to obtain conflict equivalent
abstractions [11]. The language of certain conflicts provides a powerful tool
in this regard, because it identifies all potentially blocking behaviours, and
these can all be treated alike. Abstraction along this line is suggested in [16]
for deterministic processes, and the following proposition extends the idea
to arbitrary nondeterministic processes.

Proposition 8 Let P ∈ ΠA. Construct a deterministic process CP ∈ ΠA

such that

L(CP) = NConf(P) ∪ (NConf(P)A ∩ L(P)) ∪ {ε} ; (22)

M(CP) = NConf(P) ∩M(P) . (23)

Then P ≃conf P ‖ CP .

Proof. Let T ∈ ΠA be an arbitrary process.
First, let P ‖ T be nonblocking, and let P ‖ CP ‖ T

s
⇒ P ′ ‖ C ′

P ‖ T ′.

Since P ‖ T is nonblocking, there exists t ∈ A∗ such that P ′ ‖ T ′ tω
⇒. Then

stω ∈ M(P) and stω ∈ M(T), and since P ‖ T is nonblocking, it follows
that stω ∈ NConf(P)∩M(P) = M(CP). Since CP is deterministic, it also

holds that P ‖ CP ‖ T
s
⇒ P ′ ‖ C ′

P ‖ T ′ tω
⇒, i.e., P ‖ CP ‖ T is nonblocking.

Conversely, let P ‖CP ‖ T be nonblocking, and let P ‖ T
s
⇒ P ′ ‖ T ′. Let

s′ ⊑ s be the longest prefix of s such that s′ ∈ L(CP). Note that s′ exists

because ε ∈ L(CP). Then CP ‖ T
s′
⇒, and since P ‖ (CP ‖ T) is nonblocking,

it follows that s′ ∈ NConf(P). Then it holds that s′ = s: if s′ is a proper
prefix of s, then s′α ⊑ s for some α ∈ A, and given s ∈ L(P) it follows that
s′α ∈ NConf(P)A ∩ L(P) ⊆ L(CP) by (22), but s′ was chosen to be the
longest prefix of s such that s′ ∈ L(CP). Therefore, s = s′ and thus CP

s
⇒,

which implies P ‖CP ‖T
s
⇒ P ′ ‖C ′

P ‖T ′ for some C ′
P ∈ ΠA. Since P ‖CP ‖T

is nonblocking, there exists t ∈ A∗ such that P ′ ‖C ′
P ‖T ′ tω

⇒. Then it follows

that P ′ ‖ T ′ tω
⇒, i.e., P ‖ T is nonblocking. �

According to proposition 8, an arbitrary process P can be replaced by
the conflict equivalent abstraction P ‖ CP , effectively merging all traces of
certain conflicts into a single state.

18

The addition of the empty trace in (22) is only needed to cover the case
NConf(P) = ∅. In this case, L(CP) = {ε} after addition of the empty
trace, and M(CP) = ∅, ensuring that CP is blocking in combination with
any other nonempty process.

The abstraction P ‖ CP in proposition 8 can be obtained directly from
the results of the algorithm in Fig. 4. It is enough to add a new blocking
state ⊥ to the result Pn = P ‖ det(P)|Xn

and redirect all transitions leading
to the states deleted from P ‖ det(P) to ⊥.

6 Conclusions

An algorithm to compute the language of certain conflicts of a nondeter-
ministic finite-state process is presented and analysed, and it is shown how
the result of this algorithm can be used to compute conflict-preserving ab-
stractions of a nondeterministic process by identifying all behaviours that
may lead to livelock or deadlock in some environment. Despite its expo-
nential complexity, this algorithm can improve on existing methods that
merely approximate the language of certain conflicts: by simplifying only
small components in a large verification problem, a substantial reduction of
the overall state space can be achieved.

References

[1] K. Åkesson, H. Flordal, and M. Fabian. Exploiting modularity for
synthesis and verification of supervisors. In Proc. 15th IFAC World
Congress on Automatic Control, Barcelona, Spain, 2002.

[2] Rajeev Alur, Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C.
Mang. Automating modular verification. In Proc. Int. Conf. Concur-
rency Theory, CONCUR ’99, LNCS, pages 82–97. Springer, 1999.

[3] A. Arnold. Finite Transitions Systems: Semantics of Communicating
Systems. Prentice-Hall, 1994.

[4] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F. Franklin.
Supervisory control of a rapid thermal multiprocessor. IEEE Trans.
Automat. Contr., 38(7):1040–1059, July 1993.

[5] Bertil Brandin and François Charbonnier. The supervisory control of
the automated manufacturing system of the AIP. In Proc. Rensse-

19

laer’s 4th Int. Conf. Computer Integrated Manufacturing and Automa-
tion Technology, pages 319–324, Troy, NY, USA, 1994.

[6] Bertil A. Brandin, Robi Malik, and Petra Malik. Incremental veri-
fication and synthesis of discrete-event systems guided by counter-
examples. IEEE Trans. Contr. Syst. Technol., 12(3):387–401, May
2004.

[7] Ed Brinksma, Arend Rensink, and Walter Vogler. Fair testing. In In-
sup Lee and Scott A. Smolka, editors, Proc. 6th Int. Conf. Concurrency
Theory, CONCUR ’95, volume 962 of LNCS, pages 313–327, Philadel-
phia, PA, USA, 1995. Springer.

[8] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Kluwer, September 1999.

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Programming Languages and Systems, 8(2):244–263, April
1986.

[10] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[11] Hugo Flordal and Robi Malik. Modular nonblocking verification using
conflict equivalence. In Proc. 8th Int. Workshop on Discrete Event
Systems, WODES ’06, pages 100–106, Ann Arbor, MI, USA, July 2006.

[12] Cédric Fournet, Tony Hoare, Sriram K. Rajamani, and Jakob Rehof.
Stuck-free conformance. In Proc. 16th Int. Conf. Computer Aided Veri-
fication, CAV2004, volume 3114 of LNCS, pages 242–254, Boston, MA,
USA, July 2004. Springer.

[13] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[14] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison-Wesley,
2001.

[15] R. Kumar and M. A. Shayman. Non-blocking supervisory control of
nondeterministic discrete event systems. In Proc. American Control
Conf., pages 1089–1093, Baltimore, MD, USA, 1994.

20

[16] Robi Malik. On the set of certain conflicts of a given language. In Proc.
7th Int. Workshop on Discrete Event Systems, WODES ’04, pages 277–
282, Reims, France, September 2004.

[17] Robi Malik, David Streader, and Steve Reeves. Conflicts and fair test-
ing. Int. J. Found. Comput. Sci., 17(4):797–813, 2006.

[18] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS.
Springer, 1980.

[19] V. Natarajan and Rance Cleaveland. Divergence and fair testing. In
Proc. 22nd Int. Colloquium on Automata, Languages, and Program-
ming, ICALP ’95, pages 648–659, 1995.

[20] Patŕıcia N. Pena, José E. R. Cury, and Stéphane Lafortune. New results
on testing modularity of local supervisors using abstractions. In Proc.
11th IEEE Int. Conf. Emerging Technologies and Factory Automation,
ETFA ’06, pages 950–956, Prague, Czech Republic, September 2006.

[21] Iain Phillips. Refusal testing. Theoretical Comput. Sci., 50:241–284,
1987.

[22] Peter J. G. Ramadge and W. Murray Wonham. The control of discrete
event systems. Proc. IEEE, 77(1):81–98, January 1989.

[23] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1997.

[24] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific J. Math., 5(2):285–309, 1955.

[25] K. C. Wong, J. G. Thistle, R. P. Malhame, and H.-H. Hoang. Supervi-
sory control of distributed systems: Conflict resolution. Discrete Event
Dyn. Syst., 10:131–186, 2000.

21

