5,189 research outputs found

    Quantum system characterization with limited resources

    Full text link
    The construction and operation of large scale quantum information devices presents a grand challenge. A major issue is the effective control of coherent evolution, which requires accurate knowledge of the system dynamics that may vary from device to device. We review strategies for obtaining such knowledge from minimal initial resources and in an efficient manner, and apply these to the problem of characterization of a qubit embedded into a larger state manifold, made tractable by exploiting prior structural knowledge. We also investigate adaptive sampling for estimation of multiple parameters

    Tomography of Quantum Operations

    Get PDF
    Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. In this letter we present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin-beam.Comment: Submitted to Phys. Rev. Lett. 2 eps + 1 latex figure

    An invitation to quantum tomography (II)

    Get PDF
    The quantum state of a light beam can be represented as an infinite dimensional density matrix or equivalently as a density on the plane called the Wigner function. We describe quantum tomography as an inverse statistical problem in which the state is the unknown parameter and the data is given by results of measurements performed on identical quantum systems. We present consistency results for Pattern Function Projection Estimators as well as for Sieve Maximum Likelihood Estimators for both the density matrix of the quantum state and its Wigner function. Finally we illustrate via simulated data the performance of the estimators. An EM algorithm is proposed for practical implementation. There remain many open problems, e.g. rates of convergence, adaptation, studying other estimators, etc., and a main purpose of the paper is to bring these to the attention of the statistical community.Comment: An earlier version of this paper with more mathematical background but less applied statistical content can be found on arXiv as quant-ph/0303020. An electronic version of the paper with high resolution figures (postscript instead of bitmaps) is available from the authors. v2: added cross-validation results, reference

    Optimal, reliable estimation of quantum states

    Get PDF
    Accurately inferring the state of a quantum device from the results of measurements is a crucial task in building quantum information processing hardware. The predominant state estimation procedure, maximum likelihood estimation (MLE), generally reports an estimate with zero eigenvalues. These cannot be justified. Furthermore, the MLE estimate is incompatible with error bars, so conclusions drawn from it are suspect. I propose an alternative procedure, Bayesian mean estimation (BME). BME never yields zero eigenvalues, its eigenvalues provide a bound on their own uncertainties, and it is the most accurate procedure possible. I show how to implement BME numerically, and how to obtain natural error bars that are compatible with the estimate. Finally, I briefly discuss the differences between Bayesian and frequentist estimation techniques.Comment: RevTeX; 14 pages, 2 embedded figures. Comments enthusiastically welcomed
    corecore