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Summary . The quantum state of a light beam can be represented as an infinite dimensional
density matrix or equivalently as a density on the plane called the Wigner function. We de-
scribe quantum tomography as an inverse statistical problem in which the state is the unknown
parameter and the data is given by results of measurements performed on identical quantum
systems. We present consistency results for Pattern Function Projection Estimators as well as
for Sieve Maximum Likelihood Estimators for both the density matrix of the quantum state and
its Wigner function. Finally we illustrate via simulated data the performance of the estimators.
An EM algorithm is proposed for practical implementation. There remain many open problems,
e.g. rates of convergence, adaptation, studying other estimators, etc., and a main purpose of
the paper is to bring these to the attention of the statistical community.

1. Introduction

It took more than eighty years from its discovery till it was possible to experimentally determine and
visualize the most fundamental object in quantum mechanics, the wave function. The forward route
from quantum state to probability distribution of measurement results has been the basic stuff of
guantum mechanics textbooks for decennia. That the corresponding mathematical inverse problem
had a solution, provided (speaking metaphorically) that the quantum state has been probed from a
sufficiently rich set of directions, had also been known for many years. However it was only with
Smithey et al. (1993), that it became feasible to actually carry out the corresponding measurements
on one particular quantum system—in that case, the state of one mode of electromagnetic radiation
(a pulse of laser light at a given frequency). Experimentalists have used the technique to establish
that they have succeeded in creating non-classical forms of laser light such as squeezed light and
Schibdinger cats. The experimental technique we are referring to here is called quantum homodyne
tomography: the word homodyne referring to a comparison between the light being measured with
a reference light beam at the same frequency. We will explain the word tomography in a moment.
The quantum state can be represented mathematically in many different but equivalent ways, all
of them linear transformations on one another. One favorite is as the Wigner ful¢tiareal
function of two variables, integrating to plus one over the whole plane, but not necessarily nonneg-
ative. It can be thought of as a “generalized joint probability density” of the electric and magnetic

xKey words and phraseQuantum tomography, Wigner function, Density matrix, Pattern Functions estima-
tion, Sieve Maximum Likelihood estimation, E.M. algorithm.
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fields,q and p. However one cannot measure both fields at the same time and in quantum mechan-
ics it makes no sense to talk about the values of both electric and magnetic fields simultaneously. It
does, however, make sense to talk about the value of any linear combination of the two fields, say
cog¢)q + sin(¢) p. And one way to think about the statistical problem is as follows: the unknown
parameter is a joint probability density of two variablesQ and P. The data consists of inde-
pendent samples from the distribution(©f, ®) = (cog®)Q + sin(®) P, ®), whered is chosen
independently of Q, P), and uniformly in the intervd0, = ]. Write down the mathematical model
expressing the joint density @i, ®) in terms of that ol Q, P). Now just allow that latter joint
density,W, to take negative as well as positive values (subject to certain restrictions which we will
mention later). And that is the statistical problem of this paper.

This is indeed a classical tomography problem: we take observations from all possible one-
dimensional projections of a two-dimensional density. The non-classical feature is that though all
these one-dimensional projections are indeed bona-fide probability densities, the underlying two-
dimensional “joint density” need not itself be a bona-fide joint probability density, but can have
small patches of “negative probability”.

Though the parameter to be estimated may look strange from some points of view, it is math-
ematically very nice from others. For instance, one can also represent it by a matrix of (a kind
of) Fourier coefficients: one speaks then of the “density maixThis is an infinite dimensional
matrix of complex numbers, but it is a positive and selfadjoint matrix with trace one. The diago-
nal elements are real numbers summing up to one, and forming the probability distribution of the
number of photons found in the light beam (if one could do that measurement). Conversely, any
such matrixp corresponds to a physically possible Wigner functidéh so we have here a con-
cise mathematical characterization of precisely which “generalized joint probability densities” can
occur.

The initial reconstructions were done by borrowing analytic techniques from classical tomog-
raphy — the data was binned and smoothed, the inverse Radon transform carried out, followed by
some Fourier transformations. At each of a number of steps, there are numerical discretization and
truncation errors. The histogram of the data will not lie in the range of the forward transformation
(from quantum state to density of the data). Thus the result of blindly applying an inverse will not
be a bona-fide Wigner function or density matrix. Moreover the various numerical approximations
all involve arbitrary choices of smoothing, binning or truncation parameters. Consequently the final
picture can look just how the experimenter would like it to look and there is no way to statistically
evaluate the reliability of the result. On the other hand the various numerical approximations tend
to destroy the interesting “quantum” features the experimenter is looking for, so this method lost in
popularity after the initial enthousiasm.

So far there has been little attention paid to this problem by statisticians, although on the one
hand it is an important statistical problem coming up in modern physics, and on the other hand
it is “just” a classical nonparametric statistical inverse problem. The unknown parameter is some
object p, or if you preferW, lying in an infinite dimensional linear space (the space of density
matrices, or the space of Wigner functions; these are just two concrete representations in which
the experimenter has particular interest). The data has a probability distribution which is a linear
transform of the parameter. Considered as an analytical problem, we have an ill-posed inverse
problem, but one which has a lot of beautiful mathematical structure and about which a lot is known
(for instance, close connection to the Radon transform). Moreover it has features in common with
nonparametric missing data problems (the projections from bivariate to univariate, for instance, and
there are more connections we will mention later) and with nonparametric density and regression
estimation. Thus we think that the time is ripe for this problem to be “cracked” by mathematical
and computational statisticians. In this paper we will present some first steps in that direction.



An invitation to quantum tomography 3

Our main theoretical results are consistency theorems for two estimators. Both estimators are
based on approximating the infinite dimensional parametey a finite dimensional parameter, in
fact, thinking of p as an infinite dimensional matrix, we simply truncate it tofdinx N matrix
where the truncation leveéll will be allowed to grow with the number of observatiamsThe first
estimator employs some analytical inverse formulas expressing the elemerds ofean values of
certain functions, called pattern functions, of the observaiign). Simply replace the theoretical
means by empirical averages and one has unbiased estimators of the elerpemiglomoreover
finite variance. If one applies this technique without truncation the estimate of the maisxa
whole will typically not satisfy the nonnegativity constraints. The resulting estimator will not be
consistent either, with respect to natural distance measures. But provided the truncation level grows
with n slowly enough, the overall estimator will be consistent. The effect of truncating the density
matrix p is to project on the subspace generated by the first elements of the corresponding basis, we
shall call it the Pattern Function Projection estimator (PFP).

The second estimator we study is sieve maximum likelihood (SML) based on the same trun-
cation to a finite dimensional problem. The truncation leNethas to depend on sample sizén
order to balance bias and variance. We prove consistency of the SML estimator under an appropri-
ate choice oiN(n) by applying a general theorem of van de Geer (2000). To verify the conditions
we need to bound certain metric entropy integrals (with bracketing) which express the size of the
statistical model under study.

This turns out to be feasible, and indeed to have an elegant solution, by exploiting features of the
mapping from parameters (density matrices) to distributions of the data. Various distances between
probability distributions possess analogues as distances between density matrices, the mapping from
parameter to data turns out to be a contraction, so we can bound metric entropies for the statistical
model for the data with quantum metric entropies for the class of density matrices. And the latter
can be calculated quite conveniently.

Our results form just a first attempt at studying the statistical properties of estimators which are
already being used by experimental physicists, but they show that the basic problem is both rich in
interesting features and tractable to analysis. The main results so far are consistency theorems for
PFP and SML estimators, of both the density matrix and the Wigner function. These results depend
on an assumption of the rate at which a truncated density matrix approximates the true one. It seems
that the assumption is satisfied for the kinds of states which are met with in practice. However,
further work is needed here to describe in physically interpretable terms, when the estimators work.
Secondly, we need to obtain rates of consistency and to further optimize the construction of the
estimator. Thirdly, one should explore the properties of penalized maximum likelihood. This will
make the truncation level data driven. Fourthly, one should try to make the estimators adaptive
with respect to the smoothness of the parameter. We largely restrict attention to an ideal case of
the problem where there is no further noise in the measurements. In practice, the observations have
added to them Gaussian disturbances of known variance. There are some indications that when the
variance is larger than a threshold g2] reconstruction becomes qualitatively much more difficult.

This needs to be researched from the point of view of optimal rates of convergence.

We also only considered one particular though quite convenient way of sieving the model, i.e.,
one particular class of finite dimensional approximations. There are many other possibilities and
some of them might allow easier analysis and easier computation. For instance, instead of truncating
the matrixp in a given basis, one could truncate in an arbitrary basis, so that the finite dimensional
approximations would correspond to specifyiNgarbitrary state vectors and a probability distri-
bution over these “pure states”. Now the problem has become a missing data problem, where the
“full data” would assign to each observation also the label of the pure state from which it came.
In the full data problem we need to reconstruct not a matrix but a set of vectors, together with an
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ordinary probability distribution over the set, so the “full data” problem is statistically speaking a
much easier problem that the missing data problem. We shall use a version of this to derive an
Expectation-Maximization algorithm (EM) for the practical implementation of the SML estimator,
see Section 5. One could imagine that Bayesian reconstruction methods could also exploit this
structure.

The analogy with density estimation could suggest new statistical approaches here. Finally, it is
most important to add to the estimated parameter, estimates of its accuracy. This is absolutely vital
for applications, but so far no valid approach is available.

In Section 2 we introduce first, very briefly, the statistical problems we are concerned with. We
then give a short review of the basic notions of quantum mechanics which are needed in this paper.
Concepts such as observables, states, measurements and quantum state tomography are explained
by using finite dimensional complex matrices. At the end of the section we show how to generalize
this to the infinite dimensional case and describe the experimental set-up of Quantum Homodyne
Detection pointing out the relation with computerized tomography.

In Section 3 we present results on consistency of density matrix estimators: projection estimator
based on pattern functions, and sieve maximum likelihood estimator. The last subsection extends
the results of the previous ones to estimating the Wigner function.

Section 4 deals with the detection losses occurring in experiments due in part to the inefficiency
of the detectors. This adds a deconvolution problem on the top of our tomography estimation.

Section 5 shows experimental results. We illustrate the behavior of the studied estimators and
propose some practical tools for the implementation — EM algorithm. The last section finishes with
some concluding remarks to the whole paper and open problems. The main purpose of the paper
is to bring the attention of the statistical community to these problem; thus, some proofs are just
sketched. They fully appear in a complementary papera@Q04).

2. Physical background

Our statistical problem is to reconstruct the quantum state of light by using data obtained from mea-
suring identical pulses of light through a technique called Quantum Homodyne Detection (QHD).
In particular we will estimate the quantum state in two different representations or parameteriza-
tions: the density matrix and the Wigner function. The physics behind this statistical problem is
presented in subsection 2.2 which serves as introduction to basic notions of quantum theory, and
subsection 2.3 which describes the model of quantum homodyne detection from quantum optics.
The relations between the different parameters of the problem are summarized in the diagram at the
end of subsection 2.3 followed by Table 1 containing some examples of quantum states. For the
reader who is not interested in the quantum physics background we state the statistical problem in
the next subsection and we will return to it in Section 3.

2.1. Summary of statistical problem

We observg X1, ®1), ..., (Xn, ®n), i.i.d. random variables with values R x [0, 7] and distri-
bution P, depending on the unknown parametewhich is an infinite dimensional matrix =
[pj.k]j k=0....00 SUCh that Tp = 1 (trace one) ang > O (positive definite). The probability density
of P, is

1 & L
Po(x, $) = — D Pk (0¥ 00e™ 177, 1)

j.k=0
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where the function$y,} to be specified later, form a orthonormal basis of the space of complex
square integrable functions @& Because is positive definite and has trace 1, this is a probability
density: real, nonnegative, integrates to 1. The dXta ®,) comes from independent QHD mea-
surements on identically prepared pulses of light whose properties or state are completely encoded
in the matrixp called a density matrix. We will consider the problem of estimagirfgpom a given
sample.

Previous attempts by physicists to estimate the density mathiave focused mainly on the
estimation of the individual matrix elements without considering the accuracy of the estimated den-
sity matrix with respect to natural distances of the underlying parameter space. In Section 3 we
will present consistency results in the space of density matrices lvrand L o-norms using two
different types of estimators, namely projection and sieve maximum likelihood estimators.

An alternative representation of the quantum state is through the Wigner fuldkt,;iom2 - R
whose estimation is close to a classical computer tomography problem namely, Positron Emission
Tomography (PET), Vardi et al. (1985). In PET one would like to estimate a probability density
onR? from i.i.d. observationgXy, ®1), ..., (Xn, ®n), with probability density equal to the Radon
transform of f:

[ee)
RIFIX, @) = / f (xcosg +tsing, xsing — t cosg)dt.
—00
Although the Wigner function is in genenabt positive, its Radon transform is always a probability
density, in factR[W,1(x, ¢) = p,(X, ¢). As the Wigner functiorV, is in one-to-one correspon-
dence with the density matrix, our state reconstruction problem can be stated as to estimate the
Wigner functionW,. This is an ill posed inverse problem as seen from the formula for the inverse
of the Radon transform

1 m +00 .
W,(Q, p) = ﬁ/o [ Py (X, $)K(qcosp + psing — x) dxdg, 2

where

1 [t .
Koo =5 f &1 expli £X)dE, ®

makes sense only as a generalized function. To correct this one usually makes a cut-off in the range
of the above integral and gets a well behaved kernel fund€igix) = %ffc |&] exp(iEx)dE. Then
the tomographic estimator &Y, is the average sampled kernel

Wc,n(q, p) =

n
o Z Kc(qcosd, + psindy — Xy).
=1
For consistency one needs to let the ‘bandwidlitk: 1/c depend on the sample simeandh, — 0
asn — oo at an appropriate rate.
In this paper we will not follow this approach, which will be treated separately in future work.
Instead, we use a plug-in type estimator based on the property

o
W@ p) = ) oKW@, p), @
k,j=0

whereW ;s are known functions and we replapeby its above mentioned estimators. We shall
prove consistency of the proposed estimators of the Wigner function \Wwrand supremum norms
in the corresponding space.
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2.2. Quantum systems and measurements

This subsection serves as a short introduction to the basic notions of quantum mechanics which will
be needed in this paper. For simplicity we will deal first with finite dimensional quantum systems
and leave the infinite dimensional case for the next subsection. For further details on quantum
statistical inference we refer to the review Barndorff-Nielsen et al. (2003) and the classic textbooks
Helstrom (1976) and Holevo (1982).

In classical mechanics the state of macroscopic systems like billiard balls, pendulums or stellar
systems is described by points on a manifold or “phase space”, each of the point's coordinates
corresponding to an attribute which we can measure such as position and momentum. Therefore the
functions on the phase space are called observables. When there exists uncertainty about the exact
point in the phase space, or we deal with a statistical ensemble, the state is modelled by a probability
distribution on the phase space, and the observables become random variables.

Quantum mechanics also deals with observables such as position and momentum of a particle,
spin of an electron, number of photons in a cavity, but breaks from classical mechanics in that
these are no longer represented by functions on a phase space but by Hermitian matrices, that is,
complex valued matrices which are invariant under transposition followed by complex conjugation.
For example, the components in different directions of the spin of an electron are cestain 2
complex Hermitian matricesy, oy, o5.

Any d-dimensional complex Hermitian matrk can be diagonalized by changing the standard
basis ofCY to another orthonormal basfe, . . ., eq} such thatXe = xiq fori = 1,...,d, with
Xi € R. The vectorsg and numbers; are called eigenvectors and respectively eigenvalués of
With respect to the new basis we can write

xx 0 0 ... 0
0 x2 0 ... 0
x| 0 0 x ... 0
0 0 0 ... xg

The physical interpretation of the eigenvalues is that when measuring the obsetvablebtain
(randomly) one of the values according to a probability distribution depending on the state of the
system before measurement and on the observabldis probability measure is degenerate if and
only if the system before measurement was prepared in a special state called an eigeKstate of
represent such a state mathematically by the proje&iamto the one dimensional space generated
by the vectos in Cd. Given a probability distributiofips, ..., pq} over the finite setxy, ..., X4},

we describe a statistical ensemble in which a propontioof systems is prepared in the st&eby

the convex combinatiop = ) ; piPi. The expected value of the random restilivhen measuring
the observablX for this particular state is equal Jo;; pix; which can be written shortly

E,(X) := Tr(pX). (5)
Similarly, the probability distribution can be recovered as
pi = Tr(pPi) (6)

thanks to the orthogonality property(PB;P;) = §i;.

Now, letY be a different observable and suppose tadoes not commute witlX, that is
XY # YX, then the two observables cannot be diagonalized in the same basis, their eigenvectors
are different. Consequently, states which are mixtures of eigenvectotsygfically will not be



An invitation to quantum tomography 7

mixtures of eigenvectors of and vice-versa. This leads to an expanded formulation of the notion
of state in quantum mechanics independent of any basis associated to a particular observable, and
the recipe for calculating expectations and distributions of measurement results.

Any preparation procedure results in an statistical ensemble, or state, which is described math-
ematically by a matrix with the following properties

(a) p > 0 (positive definite matrix),
(b) Tr(p) = 1 (normalization).

In physicsp is called adensity matrix and is for a quantum mechanical system an analogue of
a probability density. Notice that the special state piP; defined above is a particular case of
density matrix, since it is a mixture of eigenstates of the observébl@he density matrices of
dimensiond form a convex sef5y, whose extremals are thmire or vectorstates, represented by
orthogonal projection®(y) onto one dimensional spaces spanneditbjtrary vectorsys € CY.
Any state can be represented as a mixture of pure states which are not necessarily eigenstates of a
particular observable.

When measuring an observable, for examyleof a quantum system prepared in the state
we obtain a random resuX € {xi, ..., Xq} with probability distribution given by equation (6),
expectation as in equation (5), and characteristic function

G(t) := E,(expitX)) = Tr(p expitX)). (7

In order to avoid confusion we stress the important difference betXeghich is a matrix andX
which is a real-valued random variable. More concretely, if we write the basis of eigenvectors

of X then we obtain the may from states to probability distribution%,ﬁx) over resultgxy, ..., Xq}
P11 P12 ... pPud P11
P21 p22 ... p2d X 022
M:p= ) — P'(E ) = .
pd1 pd2 ... pdd pdd

Notice thatP,Sx) is indeed a probability distribution as a consequence of the defining properties
of states, and it does not contain information about the off-diagonal elemeptsnoéaning that
measuring only the observabieis not enough to identify the unknown state. Roughly speaking,
as dimSq) = d2 — 1 = (d — 1)(d + 1), one has to measure on many identical systems each
one of a number ofl + 1 mutually non-commuting observables in order to have a one-to-one map
between states and probability distributions of results. The probing of identically prepared quantum
systems from different ‘angles’ in order to reconstruct their state is broadly ngoedum state
tomographyin the physics literature.

Let us suppose that we have at our dispossystems identically prepared in an unknown state
o € Sy, and for each of the systems we can measure one of the fixed obseXeébles ., X(d+1).
We write the observables in diagonal form

d
X(i)=) X.aPia (8)

a=1

wherex; 5 eigenvalues ang; ; eigenstates. We will perform a randomized experiment, i.e. for each
system we will choose the observable to be measured by randomly selecting its index according to
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a probability distributiorP® over{1, ..., d +1}. The results of the measurement on iffesystem
are the paittx = (X, k) whered, ..., &, are i.i.d. with probability distributiorP(® and Xy
is the result of measuring the observaKigby) whose conditional distribution is given by

PM(Xk = Xi.a|®k = i) = Tr(oPi.a) 9)

The statistical problem is now to estimate the paramefeom the datayy, Yo, ..., Yn. In the next
subsection we will describe quantum homodyne tomography as an analogue of this problem for
infinite dimensional systems.

2.3. Quantum homodyne tomography
Although correct and sufficient when describing certain quantum properties such as the spin of a
particle, the model presented above needs to be enlarged in order to cope with quantum systems
with ‘continuous variables’ which will be central in our statistical problem. This technical point
can be summarized as follows: we repla@® by an infinite dimensional complex Hilbert space
‘H, the Hermitian matrices becomirsglfadjoint operatorgacting onH. The spectral theorem tells
us that selfadjoint operators can be ‘diagonalized’ in the spirit of (2.2) but the spectrum (the set of
‘eigenvalues’) can have a more complicated structure, for example it can be continuous as we will
see below. The density matrices pasitiveselfadjoint operatorg such that T¢o) = 1 and can be
regarded as infinite dimensional matrices with elemgpts:= (xpj , pl//k) for a given orthonormal
basis{y1, Y2, ...} in H.

The central example of a system with continuous variables in this paper is the quantum patrticle.
Its basic observables position and momentum, are two unbounded selfadjoint op&ratods?
respectively, acting oh2(RR), the space of square integrable complex valued functior® on

Q¥ (X) = Xyr1(X),

_ L dvex)
(Py2)(x) = —i ax

for 1, ¥ arbitrary functions. The operators satisfy Heisenbecgsimutation relation®QP —

PQ = i1 which implies that they cannot be measured simultaneously. The problem of (separately)
measuring such observables has been elusive until ten years ago when pioneering experiments in
quantum optics by Smithey et al. (1993), led to a powerful measurement techniquegceltedm
homodyne detectionThis technique is the basis of a continuous analogue of the measurement
scheme presented at the end of the previous subsection @hefeobservables were measured in

the case of @-dimensional quantum system.

The quantum system to be measured is a beam of light with a fixed frequency whose observables
are the electric and magnetic field amplitudes which satisfy commutation relations identical to those
characterizing the quantum particle, with which they will be identified from now on. Their linear
combinationsXy = cos¢Q + singP are calledquadratures and homodyne detection is about
measuring the quadratures falt phasesp € [0, 7]. The experimental setup shown in Figure 1
contains an additional laser called a local oscillator (LO) of high intengjty> 1 and relative
phasep with respect to the beam in the unknown stateThe two beams are combined through a
fifty-fifty beam splitter, and the two emerging beams are then measured by two photon detectors.
A simple quantum optics computation (see Leonhardt (1997)) shows that in the limit of big LO
intensity the difference of the measurement results (countings) of the two detectors rescaled by the
LO intensity X = 11=12 has the probability distribution corresponding to the measurement of the

12|
quadratureXy. The resultX takes values ifR and its probability distributiorP, (-|¢) has a density
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Fig. 1. Quantum Homodyne Tomography measurement system

p, (X|¢) and characteristic function (see equation (7))
Gp.x,(t) = Tr(p expitXy)). (10)

The phase can be controlled by the experimenter by adjusting a parameter of the local oscillator.
We assume that he chooses it randomly uniformly distributed over the inf8rval. Then the joint
probability distributionP, for the pair consisting in measurement result and pNase (X, ®) has
density p, (X, ¢) equal to%pp(x|¢>) with respect to the measudx x d¢ onR x [0, 7]. An
attractive feature of the homodyne detection scheme is the invertibility of thélrnizgt associates
P, to p, making it possible to asymptotically infer the unknown paramettom the i.i.d. results
Y1, ..., Yo of homodyne measurements misystems prepared in the state

We will see now why this state estimation method is caligédntum homodyne tomography
by drawing a parallel with computerized tomography used in the hospitals. In quantum optics
it is common to represent the state of a quantum system by a certain functi@A caled the
Wigner function W(q, p) which is much like a joint probability density f&@ andP, for instance
its marginals are the probability densities for measu@nand respectively?. The Wigner function
of the statep is defined by demanding that its Fourier transfofinwith respect tdooth variables
has the following property

W, (U, v) := Fo[W,](u, v) = Tr(p exp(—iuQ — i vP)). (11)

We see from this equation that@ andP were commuting operators th&k(qg, p) would indeed

be the joint probability density of outcomes of their measurement. As the two observables cannot
be measured simultaneously, we cannot speak of a joint density, in fact the Wigner function need
not be positive, but many interesting features of the quantum state can be visualized in this way. Let
(u, v) = (tcosg, t sing), then

W(u, v) = F1[p(-, ¢)1(t) = Tr(p exp(—itXy)) (12)

where the Fourier transfortfy in the last term is with respect to the first variable, keepjrfixed.
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The equations (11) and (12) are well known in the theory of Radon trangfoamd imply that
for each fixedp, the probability density, (x, ¢) is the marginal of the Wigner function with respect
to the directiony in the plane,

Po(X, @) = RIW,1(X, ¢) = f W, (xcosg + ysing, xsing — y cosp)dy, (13)

adding quantum homodyne tomography to a number of applications ranging from computerized
tomography to astronomy and geophysics, Deans (1983). In computerized tomography one recon-
structs an image of the tissue distribution in a cross-section of the human body by recording events
whereby pairs of positrons emitted by an injected radioactive substance hit detectors placed in a ring
around the body after flying in opposite directions along an axis determined by anfaad@ = ].
In quantum homodyne tomography the role of the unknown distribution is played by the Wigner
function which is in general not positive, but has a probability dengjtyx|¢) as marginal along
any directiongp.

The following diagram summarizes the relations between the various objects in our problem:

experiment
R Dy (x, ¢) —PEIMENL - s @), ... (X, D).

P W,

Fo F1

~

W,

Finally in Table 1 we give some examples of density matrices and their corresponding Wigner
function representations for different states. The matrix elementsre calculated with respect to
the orthonormal base corresponding to the wave functiokgpbibtons states

Y(X) = Hy(x)e X/ (14)

whereHy are the Hermite polynomials normalized such tﬁa/t,f = 1. A few graphical represen-
tations can be seen in Figure 3.

State Density matrixpk Wigner functionW(q, p)

Vacuum state 000 =1, rest zero % exp(—q? — p?)

Single Photon state | p11 =1, rest zero 1292 + 2p? — 1) exp(—q2 — p?)

Thermal statgg > 0 50 (L — e Fye Pk = tanh(8/2) exp—(g? + p?) tanh(8/2)]
Coherent state € Ry exp(—N)% %exp(—(q — VN2 - p?)
Squeezed state | C(N, £)(3 tanh&))**+] x L exp(—€% (q — )% — e % p?)
NeRy, §eR, Hj (»)Hc () /V/TIK!

Table 1: Density matrix and Wigner function of some quantum states

The vacuum is the pure state of zero photons, notice that in this case the distributipasdf
P are Gaussian. The thermal state is a mixed state describing equilibrium at tempé&raiurgés,
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having Gaussian Wigner function with variance increasing with the temperature. The coherent state
is pure and characterizes the laser pulse. The photon number is Poisson distributed with an average
of N photons. The squeezed states have Gaussian Wigner functions whose variances for the two
directions are different but have a fixed product. The paraméleand ¢ satisfy the condition

. . . . i 1/2
N > sint?(€), C(N, &) is a normalization constant, = % andy = (griz) 2.

3. Density matrix estimation

D’Ariano et al. (1994) presented the density matrix analogue of formula (2) of the Wigner function
as inverse Radon transform of the probability denpity

o0 g d
p:/ dxfo b, (X, 9K (X — XD, (15)

whereK is the generalized function given in equation (3) whose argument is a selfadjoint operator
X¢ — x1. The method has been further analyzed in D’Ariano (1995), Leonhardt et al. (1995), see
also D’Ariano et al. (1995). We recall that in the case of the Wigner function we needed to regularize
the kernelK by introducing a cut-off in the integral (3). For density matrices the philosophy will be
rather to project on a finite dimensional subspacé ffR) whose dimensiomN will play the role

of the cut-off. In fact all the matrix elements of the density magrixith respect to the orthonormal
basis{yk} -, defined in (14), can be expressed as kernel integrals

00 T d .
Pk,j=/ ole0 7¢pp(x,¢)fk,j(X)e"“"‘)¢, (16)

with fcj = fjk bounded real valued functions which in the quantum tomography literature are
calledpattern functions The singularity of the kerneK is reflected in the asymptotic behavior of
fx,j ask, j — oo. Afirst formula for f ; was found in Leonhardt et al. (1995) and uses Laguerre
polynomials. This was followed by a more transparent one due to Leonhardt et al. (1996),

d
fi,j(x) = &(Wk(x)wj (X)), (17)

for j > k, whereyy andgj represent the square integrable and respectively the unbounded solutions
of the Schédinger equation,

2
[—%%-ﬁ-%xz]lﬁ:ww, w€eR. (18)
Figure 2 shows pattern functions for different valueg ahd j. We notice that the oscillatory part

is concentrated in an interval centered at zero whose length increask auitthj, the number of
oscillations increases witkand j and the functions become more irregular as we move away from
the diagonal. It can be shown that tails of the pattern function decay tike~il. More properties

of the pattern function can be found in Leonhardt et al. (1996) and @004).

3.1. Pattern function projection estimation
Equation (16) suggests thmbiased estimatof™ of p, based om i.i.d. observations ofX, ®),
whose matrix elements are:

o 1
Ay == Fiei (Xe. o). (19)
(=1
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Pattern function fs,s Pattern function fzo,zo
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-5 0 5 -10 -5 0 5 10
q q
Pattern function fs,zo Pattern function f1 030
1 1.5
0.5 !
0.5
0
0
-0.5 05
-1
-10 -5 0 5 10 -10 -5 0 5 10
q q

Fig. 2. Pattern functions

whereFy j (X, ¢) = fi j(x)e7U~0? see D’'Ariano et al. (1995), Leonhardt et al. (1995, 1996).

By the strong law of large numbers the individual matrix elements of this estimator converge to
the matrix elements of the true parameseHowever the infinite matri¥™ need not be positive,
normalized, or even selfadjoint, thus it cannot be interpreted as a quantum state. These problems
are similar to those encountered when trying to estimate an unknown probability density by using
unbiased estimators for all its Fourier coefficients. The remedy is to estimate only a finite number of
coefficients at any moment, obtaining a projection estimator onto the subspace generated by linear
combinations of a finite subset of the basis vectors. In our case we will project onto the space of
matrices of dimensiolN = N(n) with respect to the bas{g/k};2 .

) 1 .
ey = - X; Fij(Xe, @),  forO<k,j<N-—1,
(=

and,élg'j) =0for(kA j) > N.

In order to test the performance of our estimators we introducé thend L > distances on the
space of density matrices. Letandr be two density matrices with — = ; A; P; the diagonal
form of their difference, and notice that some of the eigenvalues are positive and some negative such
that their sum is zero due to the normalization of the density matrices. We define the absolute value
lo — | := > |12 |Pi and the norms

lo—tl1:=Tr(lp — ), (20)
1/2

1/2 0
lo = zllz = [Trdo = =] " = | 3 loi —wil?| (22)
j,k=0
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Let us consider now the mean integrated square error (MISE) and split it into the bias and
variance parts:

00 N-1
~(N, ~(N,
E(Y 1A —ocil®) = Y lekilP+E( Y 150" = ok 1) = bX(m) + o). (22)
j-k=0 (knj)=N j,k=0

By choosingN (n) — oo ash — oo the biash?(n) converges to zero. For the variance we have the
upper bound

L N1
o2 = = Z/O A|Fk,,-(x,¢)—pk,,-|2pp(x,¢>d¢dx

j.k=0

1 N=1 n
n Z/O Ale,j(X,¢)|2pp(x,¢)d¢dx

j,k=0
1 N2 .
- = Z/dxfk,j(x)zf Py (X, $)dg. (23)
n . — JR 0
j,k=0
The proof of the following lemma on the norms of the pattern functions can be foundan(2144).

LEMMA 3.1. There exist constants;CC»,, C3z such that

N
D IHijli5 < CaNT3, (24)
k,j>0
N
D Ifijllz < CaN3, (25)
k,j>0
21
P, (X, $)d¢ < Ca, forall x € R. (26)

By applying the lemma to equation (23) we conclude that the estingatbP is consistent with
respect to thé » distance if we choosl (n) — oo asn — oo such thatN(n) = o(n®7). Based on
the property| o™ |1 < +/N|p™N-M||» we can prove a similar result concernihg-consistency,
see Gud (2004).

THEOREM3.2. Let N(n) — oo be the dimension of the pattern function projection estimator.
If N(n) = o(n®7), then
E(IpN"Y — pl3) — 0, asn — co. (27)

If N (n) = o(n%19) then
E(IpN"Y — pll1) — 0, asn — oo. (28)

Rates of consistency can be obtained by assuming that the state belongs to a given class for which
upper bounds of the bias can be calculated/dia)) is chosen such as to balance bias and variance.
This problem will be attacked in future work within the minimax framework. In Section 5 we
present a data-dependent way of selecting the dimension of the projection estimator based on the
minimization of the empirical »-risk using a cross-validation technique.
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3.2. Sieve maximum likelihood estimation

We will consider now a maximum likelihood approach to the estimation of the ptateet us

recall the terms of the problem: we are given a sequéhc¥,. .., Y, of i.i.d. random variables
Yi = (Xj, ®j) with values inR x [0, =] and probability density, depending on the parameter
which is an infinite dimensional density matrix. We would like to find an estimatgr of

P =5V, Yz, ..., Ya).

Let p andt be density matrices and denote by

1/2
h(P,, P;) := (/(\/p_p— JP)? dxd<p) , (29)

the Hellinger distance between the two probability distributions. The following relations are well
known

1
O (Pp, Pr) = 5I1Po = Prlla = h(P,, Pr) < /IIPp — Prll1. (30)

An important property which is true for any measurement is the following inequality between the
classical and quantum distances, cf. &(#004),

IPo — Pelle = Il — 7l (31)

From (30) and (31) we obtain
h(P,O5 PT) = Vv “10 - T”l’ (32)

for arbitrary statep, r. As we have seen previously, the inverse map fieyrto o is unbounded

thus we do not have an inequality in the opposite direction to the one above. However we can prove
the continuity of the inverse map by using a matrix analogue of the Sh&fmma from classical
probability (see Williams (1991)) stating that if a sequence of probability densities converges point-
wise almost everywhere to a probability density, then they also converge in total variation norm.
The matrix Sche#’s lemma which can be found in Simon (1979) says that P, p@, ... are
density matrices (positive and trace one) and if the coeﬁici;ei?ﬁfsconverge topi j asn goes to
infinity, for any fixed indices, j, then|p™ — p|l1 — 0. But by equation (16) if the sequenBem)

converges tdP, asn — oo with respect to thel,-distance therpi(”}) converges tgj j and thus
o™ — p|l1 — O, completing the proof of the continuity of the map frd¥ to p. In particular we

havel|p™ — p|l2 — 0 due to the inequality between the andL, norms
It —pll2 < llt — pll1. (33)
The maximum likelihood estimator @f is defined as
n
argmaxy _10g pe (Xe. bc) (34)
‘ =1

where the maximum is taken over all density matrices in on the spa@). However there exist
density matrices such that the probability density, takes arbitrarily high values at all the points
(X¢, @¢). To see this let us first remind the reader that any density matrix is a convex combination
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of “pure states” which are projectiofXy) on one dimensional sub-spacedofR) generated by
vectorsyr which can be written as a Fourier sum

YOO =Y akyk(X) (35)

k=0

in the basigyk} given in equation (14), withf | (x)|?dx = Y, lak|? = 1. For any such state the
corresponding probability density is

> 2
pu (%, @) = | Y e yn00|” = w? 200, (36)
k=0

wherey?(x) is the square integrable function with Fourier coefficiedtéay. It is clear that there
exists a one-to-one relation betwegrandy ¢ which preserves the,-norms, thus we can choose
vectorsps, . . . gn such that/ |¢e(x)|?dx = 1 and|gof“(x4g)|2 > Cforall ¢ = 1,...nand arbitrary
C > 0. Then the density matrix

1 n
p=- k; P(pi) (37)

representing a statistical mixture of the pure states leads to the likelihood

noq4n o C\n
potx9) =TT (= Y le xo?) = (2) - (38)
t k=1

which can be arbitrarily high for any fixad This drawback can be corrected by using for example
penalized maximum likelihood estimators or by restricting the state space to some suBapaak
density matrices such that for any amount of data the maximum of the likelihoodymerexists
andUpQ(n) is dense in the space of all density matricewith respect to some chosen distance
function. Such a method is called sieve maximum likelihood and we refer to van de Geer (2000)
and Wong and Shen (1995) for the general theory. The choice of the €¥mgshould be tailored
according to the problem one wants to solve, the class of states one is interested in, etc. Here we
will use the same subspaces as for the projection estimator of the previous subsectior@that is
consists of those states with maximali(n) — 1 photons described by density matrices over the
subspace spanned by the basis vecfars . ., ¥nm—1. We will call {Q(n)}n>0 thenumber states
sievesand the dimensiolN (n) will be an increasing function af which will be fixed later so as to
guarantee consistency.

Qn)={reS : rjx=0forallj > N(n)ork > N(n)} . (39)

Notice that the dimension of the spa@¢n) is N(n)2 — 1. Let now the estimator be
n
s :=arg max Y lo X¢, @), 40
o QTEQ(n)l:Zl g P (X¢, @p) (40)

where the maximum can be shown to exist for example by using compactness arguments. We will
denote the corresponding sieve in the space of probability densities by

Pm) ={p; : T € Qn)}. (41)
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The theory of M-estimators van de Geer (2000) tells us that the consistency of ML estimators
depends essentially on the “size” of the parameter space, in our case theXieyes P (n), which
is measured by entropy numbers with respect to some distance, for examblertbem on density
matrices or the Hellinger distance between probability distributions.

DEFINITION 3.3. LetG be a class of density matrices. Leg N, G) be the smallest value of
p € N for which there exist pairs of Hermitian matrices (not necessarily density mattﬁc}es}}’]
with j = 1,..., p such that||rj'- - r]-U |1 < 8 for all j, and such that for each € G there is a
i=j)e{l, ..., p}satisfying
<r<t).
Then Hs.1(8, G) = logNg_ 1(8, G) is calleds-entropy with bracketing of .

We note that this definition relies on the concept of positivity of matrices and the existence of the
L1-distance between states. But the same notions exist for the space of integrable functions thus
by replacing density matrices with probability densities and selfadjoint operators with functions
we obtain the definition of th&-entropy with bracketindig 1(8, F) for some space of probability
densitiesF, see van de Geer (2000). Moreover by using equation (31) and the fact that the linear
extension of the map from density matrices to probability densities sends a positive matrix to a

positive function, we get that for aerracketing[rj'-, rjU] for Q(n), the corresponding functions

[p}-, p}J] form as-bracketing forP(n), i.e. they satisfy| p}- — p}J l1 < & and for anyp € P(n)
there exists § = j (p) such thatpjL <p= pJU. Thus

Hg,1(8, P(n)) < Hp,1(8, Q(N)).

The following proposition gives an upper bound of the “quantum” bracketing entropy and in conse-
quence forHg 1(8, P(n)). Its proof can be found in Gaf(2004) and relies on choosing a maximal
number of nonintersecting balls centereddin) having radiu% and then providing a pair of
brackets for each ball.

PROPOSITION3.4. Let Q(n) be the class of density matrices of dimensiomN Then

Hg.1(8, () < CN(n)?log @ : (42)
for some constant C independent of n @nd

By combining the previous inequalities with equation (32) we get the following bound for the brack-
eting entropy of the class of square-root densities

PY2) = { VB, : Py € P, (43)
with respect to thé »>-distance

N(n
Hg 2(8, PY%(n)) < CoN(n)?log % : (44)
We will concentrate now on the Hellinger consistency of the sieve maximum likelihood estimator
Pn. We will appeal to a theorem from van de Geer (2000), which is similar to other results in the
literature on non-parametribl-estimation (see for example Wong and Shen (1995)). There are
two competing factors which contribute to the convergende(6f, P,). The first is related to the
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approximation properties of the sieves with respect to the whole parameter space. Such a distance
from p to the sieveQ(n) can take different expressions, for example in terms ofythelistance
between the corresponding probability measures

Th = argmlnxz(pps pn)a (45)
pn€Pn

where they 2-distance between two probability distributions is given by

R-DAHR PP,

. (46)
otherwise

2(PL Py = {f(
0

Notice thatr, depends om through the growth rate of the siet&(n). The second factor influ-
encing the convergence bfP,, P,) is the size of the sieves which is expressed by the bracketing
entropy. The non-parametric sieve maximum likelihood estimation theory shows that consistency
holds if there exists a sequenge — 0 such that the followingntropy integral inequalitiesire
satisfied for alh

dn
Je(n, PY2(n)) := /2 Hy?(u, P2 du v 8, < /ns?/c. (47)

82/c

wherec is some universal constant, van de Geer (2000). From (44) we get

1/2
Js(8n, PY2(n)) = O [N(n)&n (Iog N5(n)> ] , (48)
n

which implies the following constraint fax (n) — oo ands, — 0,

THEOREM 3.5. Suppose that the statesatisfiesr, — 0. Let5(™ be the sieve MLE with )
andsy satisfying (47), then

P(h(Pn, P,) > 8n 4 ) < Cexp(—ns2/c?). (50)

Proof. Details can be found in Gaf(2004) based on Theorem 10.13 of van de Geer (2000).
O

From the physical point of view, we are interested in the convergence of the state estimator
2™ with respect to the; and Lo-norms on the space of density matrices. Clearly the rates of
convergence for such estimators are slower than those of their corresponding probability densities.
As shown in the beginning of this subsection the map sending probability densitiesdensity
matricesp is continuous, thus an estimatgy taking values in the space of density matrices
consistent in thé. 1 or L,-norms if and only ifP, converges td®, almost surely with respect to the
Hellinger distance.

COROLLARY 3.6. The Hellinger consistency d#, is equivalent to the| - ||1-consistency of
™. In particular, if 3~ exp(—ns2/c?) < oo and the assumptions of Theorem 3.5 hold, then we
have||p™ — p|l1 — 0, a.s..
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3.3.  Wigner function estimation

The Wigner function plays an important role in quantum optics as an alternative way of representing
quantum states and calculating an observable’s expectation: for any obsefvitdes exists a
function Wy from R? to R such that

Tr(Xp) = f Wx (d, pW,(q, p)dgdp (51)

Besides, physicists are interested in estimating the Wigner function for the purpose of identifying
features which can be easier visualized than read off from the density matrix, for example a “non-
classic” state may be recognized by its patches of negative Wigner function, while “squeezing” is
manifest through the oval shape of the support of the Wigner function, see Table 1 and Figure 3.
As described in Subsection 2.3 the Wigner function should be seen formally as a joint density of
the observable® andP which may take non-negative values, reflecting the fact that the two ob-
servables cannot be measured simultaneously. However the Wigner function shares some common
properties with probability densities, in particular their marginal/, (g, p)dgand/ W,(q, p)dp

are probability densities on the line. In fact this is true for the marginals in any direction which are
nothing else then the densiti@s (X, ¢). On the other hand there exist probability densities which
are not Wigner functions and vice-versa, for example the latter cannot be too “peaked”:

1
IW, (@, p)| < — forall (g, p) e R%, p € S. (52)

As a corollary of this uniform boundedness we get
1
”Wp_Wr”oo = 7;”:0_7:”1- (53)

for any density matricep andt. Indeed we can writp — t = py — p_ wherep, and —p_
represent the positive and negative parpef r. Then

[Wo = Welloo = [[Wo, = Wy_lloo < IWp, [l + IWp_lleo =
1 1

—(lo+llr +lp-llD) = =l — Tl

T b/

Another important property is the fact that the linear span of the Wigner functions is dense in
L, (R?), the space of real valued, square integrable functions on the plane, and there is an isometry
(up to a constant) between the space of Wigner functions and that of density matrices with respect
to theLo-distances

1
W, — W, 12 = [[ W, (@, P) — We@, p)iPdpda= 5 | p— 7 I3 (54)

In Section 2 we have described the standard estimation method employed in computerized tomog-
raphy which used a regularized kerrg) with bandwidthh, = 1/c converging to zero as — oo

at an appropriate rate. This type of estimators for the Wigner function will be analyzed separately
in future work in the minimax framework along the lines of Cavalier (2000). The estimators which
we propose in this subsection are of a different type, they are based on estimatopifgged into

the following linearity equation

W, (@, p) =Y ok Wk j(d, ),
K,
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whereW j are known functions corresponding to the matrix with the etkryj ) equal to 1 and all
the rest equal to zero, see Leonhardt (1997). The isometry (54) implies that the Mnijl}ﬁ?j -0

forms an orthogonal basis bk (R?). Following the same idea as in the previous section we consider
the projection estimator

N(n)—1 1 n
W@ py= > (ﬁ >Rk (Xe, Cbz)) Wi j (@, P).
K, j=0 =1
COROLLARY 3.7. Let N(n) be such that Nn) — oo and

N(n) = o(n¥").

Then

R N(n)7/3
Enw(")—wpug:||w;">—wp||§+o< —

Proof: Apply isometry property and Theorem 3.2.

O
Similarly we can extend the SML estimator of the density matrix to the Wigner function. Define
the subspace

W) ={W, : p € QN)},

with Q(n) as in equation (39), and define the corresponding SML estimattds= W;m where
»™ was defined in (40).

COROLLARY 3.8. Suppose thap satisfiesr, — 0. LetV_\l,§") be the SML estimator with ()
andép satisfying (47) ang_, exp(—ns2/c?) < oo. Then we have

IW®™ — W,z > 0
almost surely. Under the same conditions

IW®™ — Wpllos — 0
almost surely.

Proof: Apply the inequalities (53, 54) and Corollary 3.6.

4. Noisy observations

The homodyne tomography measurement as presented up to now does not take into account various
losses (mode mismatching, failure of detectors) in the detection process which modify the distribu-
tion of results in a real measurement compared with the idealized case. Fortunately, an analysis of
such losses (see Leonhardt (1997)) shows that they can be quantified by sfioglacycoeffi-

cient 0< n < 1 and the change in the observations amounts replagitny the noisy observations

X[ = X + (1 —1n)/2% (55)
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with & a sequence of i.i.d. standard Gaussians which are independentgf. allhe problem is
again to estimate the paramegefrom Y/ = (X{, ®;), fori = 1,..., n. The efficiency-corrected
probability density is then the convolution

n
1-9

P (Y, ¢; ) = (w1 — )~ Y2 / p(x,¢>exp[— (X—n_l/ZY)Z} dx. (56)

The physics of the detection process detailed in Leonhardt (1997) offers an alternative route
from the state to the probability density of the observatidjis In a first step one performs a
Bernoulli transformation Bn) on the state which is a quantum equivalent of the convolution with
noise for probability densities, and obtains a new density mattixTo understand the Bernoulli
transformation let us consider first the diagonal elemé¢pis = ok, k = 0,1.} and{q; =
p?,j, j = 0, 1..} which are both probability distributions ov&rand represent the statistics of the

number of photons in the two states. ltéter = (ktp)nk(l — n)P be the binomial distribution.
Then

i = > bk (57)
k=]

which has a simple interpretation in terms of an “absorption” process by which each photon of the
statep goes independently through a filter and is allowed to pass with probabilityabsorbed
with probability 1— n. The formula of the Bernoulli transformation for the whole matrix is

o0

- 1/2
ple= 2 [oI PBPan | pipe (58)
p=0

The second step is to perform the usual quantum tomography measurement with ideal detectors
on the “noisy” stateo” obtaining the resulty; with density p,(x, ¢; n). It is noteworty that the
transformationsB(n) form a semigroup, that is they can be compose®@g)B(n2) = B(n1n2)
and the inverse 0B() is simply obtained by replacingwith 1 in equation (58). Notice however
that if » < 1/2 the power seriegl — n~1)k appearing in the inverse transformation diverges, thus
we need to take special care in this range of parameters.

A third way to compute the inverse map from (X, ¢; n) to p is by using pattern functions
depending om which incorporate the deconvolution map fragp(x, ¢; n) to p,(X, ¢; 1):

o0 T d
PK, | =/ dX/O 7¢Dp(X,¢; m fkj (X ). (59)

Such functions are analyzed in D’Ariano (1995); D’Ariano et al. (1995) where it is argued that the
method has a fundamental limitation fp< 1/2 in which case the pattern functions are unbounded,
while for n > 1/2 numerical calculations show that their range grows exponentially fast with both
indicesj, k.

The two estimation methods considered in Section 3 can be applied to the state estimation with
noisy observations. The projection estimator has the same form as in Subsection 3.1 with a similar
analysis of the meah»-risk taking into account the norms of the new pattern functiis(x; »).

The sieve maximum likelihood estimator follows the definition in Subsection 3.2 and a consistency
result can be formulated on the lines of Corollary 3.6. We expect however that the rates of conver-
gence will be dramatically slower and we will leave this analysis for a separate work.
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5. Experimental results

In this section we study the performance of the Pattern Function Projection estimator and the Sieve
Maximum Likelihood estimator using simulated data. In Table 1 we showed some examples of

density matrices and Wigner functions of quantum states. In Figure 3, we display their correspond-
ing graphical representation. For some of them the corresponding probability distribution can be

expressed explicitly and it is possible to simulate data. In particular we shall simulate data from

QHT measurements on squeezed states with efficigneyi.

5.1. Implementation

In order to implement the two estimators we need to compute the basis fungticaared the func-
tions ¢n, which are solutions of Sctidinger equation (18). For this, we use an appropriate set of
recurrent equations, see Leonhardt (1997), Ch. 5. Pattern functions can then be calculated as

fi,j (X) = 22X ) (X)) (X) — v/ 2(] + Drjr1(X)dk(X) — v 2(K 4+ Drj (X)dk4-1(X),

forall j > k, otherwisefy j(x) = fj k(x) and thenFy j(x, 8) = fi j(x)& &=,

On the practical side, finding the maximum of the likelihood function over a set of density
matrices is a more complicated problem due to the positivity and trace one constraints which must
be taken into account. A solution was proposed in Banaszek et al. (1999), where the restriction on
positivity of a density matrix is satisfied by writing the Cholevski decomposition

o=T*T (60)
whereT of upper triangularmatrices of the same dimensionasvith complex coefficients above
the diagonal and reals on the diagonal. The normalization conditier=Tt translates int¢iT ||> =
1 which defines a ball in the space of upper triangular matrices with ¢hdistance. We will denote

by 7 (n) the set of such matrices having dimenshm). The sieve maximum likelihood estimator
is the solution of the following optimization problem witth = N (n)

n
T = argmax Z log p,(Xe, @)
TeT(n) (=1

n

N-1 Kk
argmax » log ) ‘ > Tim¥m(Xe)e M 2

TTM) =1 k=1 m=0

The numerical optimization was performed using a classical descendent method with con-
straints. Notice that we have an optimization problenNsn— 1 real variables. Given the problem
of high dimensionality and computational cost we propose an alternative method to the procedure
mentioned above. It exploits the mixing properties of our model. Any density matrix of dimension
N can be written as convex combination Mf pure states, i.ep = Zr'\':*(Jl pror, Wherep, > 0,
> br = 1 andp, is a one dimensional projection whose Cholevski decomposition is of the form
or = t*t, wheret, is the row vector of dimensiofl on which p; projects, and; is the column
vector of the complex conjugate §f. It should be noted that even though decomposition of our
state in pure states is not unique this is not a problem given we are actually not interested in this rep-
resentation but in the resulting convex combination, the state itself. Now we can state the problem
as to find the maximizer of the loglikelihood

n N-1 n N-1 N(n)—1

LUK ®0): .0 = 32108 Y- PP (Xes @) = D109 Y- pr| D temdim(Xe™

(=1 r=0 (=1 r=0 m=0
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Fig. 3. Graphical representation of quantum states
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wheret, m represents the thcoordinate of; . We now maximize over ap B where

N-1

oot} : pr =0 ) pr=1]tl2=1 forallr
r=0

We propose an EM algorithm as an alternative method to the one presented in Banaszek et al.
(1999). See, Dempster et al. (1977) for an exposition on the formulation of the EM algorithm for
problems of ML estimation with mixtures of distributions. The iteration procedure is given then in
the following steps.

1) Compute the expectation of the conditional likelihood:

n N(n-1 0|dp0|d(xe @y)

Q(B18%) = i log pr pp, (Xe, @o).
; Zo N ptdpod (X, @) g

2) Maximize Q(8|8°'%) over all g € B and obtaing™" with components

oo _ 1 " PP pS(Xe, @)
T - )
N4 ZN(n) ! D?IdDO'd(Xz, dy)
n
oMY = t't; tr = arg max £ 10g p, (Xe, Do),
Itl2=1 &
where dold
0 (o]
fold _ Por (Xe, o)

N(”) * pPdpgld(X,, )

As initial condition one could take very simple ad hoc states. For exampletgtakehe vector
(14,0,...,0) and pp = 1 andt; to be the null vector angb, = O forr > 0. This corresponds
to theone photorstate. Another possible combination is to takg = & andpr = N This
corresponds to the state represented by a diagonal matrix, called a chaotlc state. Another strategy is
to consider a preliminary estimator, based on just few observations, diagonalize it atdeqiel
to its eigenstates angl the corresponding eigenvalues. In this way one hopes to start the iteration
from a state closer to the optimum one. In terms of speed our simulations suggests to use the EM
version as dimension grows. Establishing any objective comparison between direct optimization
and EM algorithm has proven to be difficult given the dependency on initial conditions, and high
dimensionality of the problem.

5.2. Analysis of results

In Figure 5 we show the result of estimating the squeezed state defined in Table 1 using samples
of size 1600, for both Pattern Function and Maximum Likelihood estimators. At a first glance
one can see that the Pattern Function estimator result is rougher when compared to the Maximum
Likelihood estimator. This is due to the fact discussed in Subsection 3.1 that the varigfge of
increases as a function bfand j as we move away from the diagonal. The relation between quality

of estimation and dimension of the truncated estimator is seen more clearly in Figure 6 where the
L »>-errors of estimating the coherent state is shown for both estimators at different sample sizes. The
x-dot represents the point of minimum — and thus, optimum dimeridign) — for each curve. The
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curves presented there are the mearerror estimated using 15 simulations for each sample size.
From there we can see that the optimum PFP estimator for the sample af siZ600 is the one
corresponding toN*(n) = 15 while the optimum SML would be obtained using the sieve of size
N*(n) = 19.

Let us first analyze the performance of PFP estimator. Notice that fer N* the meanL »-
error increases quadratically witd due to contribution from the variance term. Adncreases
the variance decreases like?! for a fixed dimensiorN and consequently, the optimal dimension
N*(n) increases. One can see that the minimum is attained rather sharply. This suggests that, in
order to get a good result a refined method of guessing the optimum dimension becomes necessary,
eg. BIC, AIC or cross-validation. Figure 4 shows a cross-validation estimator farteeror of the
PFP estimator for three simulations (continuous lines), each one based on 1600 observations with
a squeezed state, and for comparison the expdciestror (dashed line). This represents only a
first attempt to implement model selection procedures for this problem which should be investigated
more thoroughly from the theoretical and practical point of view.

Cross—validation estimation of L2—error, sample size n=1600

1t

0.8

0.6

Lz—error

0.4r

0.2f

0 5 10 15 20 25
dimension

Fig. 4. Estimated optimal dimension for three simulations with 1600 observations

We pass now to the SML estimator. In Figure 6 we see that it has snalerror the the PFP
estimator at its optimum sieve dimension. It is remarkable that the behavior afteeror, for
N > N* has a different behavior in this case, increasing much slower than the PFP estimator at the
right side of its corresponding optimal dimension. This suggests that SML estimators could have a
lower risk if the optimum dimension is overestimated. The bottom right pane of Figure 6 shows the
optimum value of thd_,-risk in terms of sample size. Both axis are represented in a logarithmic
scale. The observed linear pattern indicates that thesk decreases an~*. The slope of both
curves correspond to ~ 0.4, showing an almost parametric rate which is not surprising given the
smoothness of the example that we consider. The valuefaf the PFP estimator is a bit smaller
than for the SML estimator, confirming its worse performance. Notice also that the coastant
bigger for PFP than for the SML estimator. We expect that the contrast between the two estimators
will be accentuated when < 1.

Finally, in Figure 7 we show the result of estimating the Wigner function of the squeezed state
using both estimators. As explained in Section 3.3 the corresponding estimator can be obtained by
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PF estimator Error of PF estimator

0.1

0.05

Fig. 5. Estimation of Squeezed state. First column, from top to bottom, PFP and SML estimators.
Second column, corresponding errors

plugging-in the density matrix estimator in equation 4. The density matrix estimators for the same
state are represented in Figure 5.

6. Concluding remarks

In this paper we have proposed a Pattern Function Projection estimator and a Sieve Maximum
Likelihood estimator for the density matrix of the quantum state and its Wigner function. We proved
they are consistent for different norms in their corresponding spaces. There are many open statistical
questions related to quantum tomography and we would like to enumerate a few of them here.

e Cross-validationFor both types of estimators, a data dependent method is needed for select-
ing the optimal sieve dimension. We mention criteria such as unbiased cross-validation, hard
thresholding or other types of minimum contrast estimators Barron et al. (1999).

e Efficiency0 < n < 1. A realistic detector has detection efficiency<0n < 1 which intro-
duces an additional noise in the homodyne data. From the statistical point of view we deal
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Opt. L2 vs n, PF and MLE

log(min(L?))
L
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Fig. 6. L5 error for Pattern Function Estimator and Sieve Maximum Likelihood Estimator and different
sample sizes: n = 100, ..., 12800 Last graphic represents the optimum L error for different sample
size, using a logarithmic scale on both axis.

with a Gaussian deconvolution problem on top of the usual quantum tomography estimation.

Rates of convergencésoing beyond consistency requires the selection of classes of states
which are natural both from the physical, as well as statistical point of view. One should
study optimal and achieved rates of convergence for given classes. <ar & 1 the rates

are expected to be significantly lower than in the ideal case, so it becomes even more crucial
to use optimal estimators. In applications, sometimes only the estimation of a functional of
o such as average number of photons or entropy may be needed. This will require a separate
analysis, cf. Shen (2001).

Kernel estimators for Wigner functiom/hen estimating the Wigner function it seems more
natural to use a kernel estimator such as in Cavalier (2000) and to combine this analysis with
the deconvolution problem in the case noisy observatiorsl, Butucea (2004).
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Fig. 7. Graphical representation of Wigner functions estimation. a) Original Wigner function of the
squeezed state, b) Pattern Function estimation, ¢) Maximum Likelihood estimation

e Other quantum estimation problem$he methods used here for quantum tomography can
be applied in other problems of quantum estimation, such as for example the calibration of
measurement devices or the estimation of transformation of states under the action of quantum
mechanical devices.
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