3,783 research outputs found

    On the Importance and Applicability of Pre-Training for Federated Learning

    Full text link
    Pre-training is prevalent in nowadays deep learning to improve the learned model's performance. However, in the literature on federated learning (FL), neural networks are mostly initialized with random weights. These attract our interest in conducting a systematic study to explore pre-training for FL. Across multiple visual recognition benchmarks, we found that pre-training can not only improve FL, but also close its accuracy gap to the counterpart centralized learning, especially in the challenging cases of non-IID clients' data. To make our findings applicable to situations where pre-trained models are not directly available, we explore pre-training with synthetic data or even with clients' data in a decentralized manner, and found that they can already improve FL notably. Interesting, many of the techniques we explore are complementary to each other to further boost the performance, and we view this as a critical result toward scaling up deep FL for real-world applications. We conclude our paper with an attempt to understand the effect of pre-training on FL. We found that pre-training enables the learned global models under different clients' data conditions to converge to the same loss basin, and makes global aggregation in FL more stable. Nevertheless, pre-training seems to not alleviate local model drifting, a fundamental problem in FL under non-IID data.Comment: Preprin

    Fast minimum variance wavefront reconstruction for extremely large telescopes

    Full text link
    We present a new algorithm, FRiM (FRactal Iterative Method), aiming at the reconstruction of the optical wavefront from measurements provided by a wavefront sensor. As our application is adaptive optics on extremely large telescopes, our algorithm was designed with speed and best quality in mind. The latter is achieved thanks to a regularization which enforces prior statistics. To solve the regularized problem, we use the conjugate gradient method which takes advantage of the sparsity of the wavefront sensor model matrix and avoids the storage and inversion of a huge matrix. The prior covariance matrix is however non-sparse and we derive a fractal approximation to the Karhunen-Loeve basis thanks to which the regularization by Kolmogorov statistics can be computed in O(N) operations, N being the number of phase samples to estimate. Finally, we propose an effective preconditioning which also scales as O(N) and yields the solution in 5-10 conjugate gradient iterations for any N. The resulting algorithm is therefore O(N). As an example, for a 128 x 128 Shack-Hartmann wavefront sensor, FRiM appears to be more than 100 times faster than the classical vector-matrix multiplication method.Comment: to appear in the Journal of the Optical Society of America

    Map online system using internet-based image catalogue

    Get PDF
    Digital maps carry along its geodata information such as coordinate that is important in one particular topographic and thematic map. These geodatas are meaningful especially in military field. Since the maps carry along this information, its makes the size of the images is too big. The bigger size, the bigger storage is required to allocate the image file. It also can cause longer loading time. These conditions make it did not suitable to be applied in image catalogue approach via internet environment. With compression techniques, the image size can be reduced and the quality of the image is still guaranteed without much changes. This report is paying attention to one of the image compression technique using wavelet technology. Wavelet technology is much batter than any other image compression technique nowadays. As a result, the compressed images applied to a system called Map Online that used Internet-based Image Catalogue approach. This system allowed user to buy map online. User also can download the maps that had been bought besides using the searching the map. Map searching is based on several meaningful keywords. As a result, this system is expected to be used by Jabatan Ukur dan Pemetaan Malaysia (JUPEM) in order to make the organization vision is implemented

    Fractal image compression and the self-affinity assumption : a stochastic signal modelling perspective

    Get PDF
    Bibliography: p. 208-225.Fractal image compression is a comparatively new technique which has gained considerable attention in the popular technical press, and more recently in the research literature. The most significant advantages claimed are high reconstruction quality at low coding rates, rapid decoding, and "resolution independence" in the sense that an encoded image may be decoded at a higher resolution than the original. While many of the claims published in the popular technical press are clearly extravagant, it appears from the rapidly growing body of published research that fractal image compression is capable of performance comparable with that of other techniques enjoying the benefit of a considerably more robust theoretical foundation. . So called because of the similarities between the form of image representation and a mechanism widely used in generating deterministic fractal images, fractal compression represents an image by the parameters of a set of affine transforms on image blocks under which the image is approximately invariant. Although the conditions imposed on these transforms may be shown to be sufficient to guarantee that an approximation of the original image can be reconstructed, there is no obvious theoretical reason to expect this to represent an efficient representation for image coding purposes. The usual analogy with vector quantisation, in which each image is considered to be represented in terms of code vectors extracted from the image itself is instructive, but transforms the fundamental problem into one of understanding why this construction results in an efficient codebook. The signal property required for such a codebook to be effective, termed "self-affinity", is poorly understood. A stochastic signal model based examination of this property is the primary contribution of this dissertation. The most significant findings (subject to some important restrictions} are that "self-affinity" is not a natural consequence of common statistical assumptions but requires particular conditions which are inadequately characterised by second order statistics, and that "natural" images are only marginally "self-affine", to the extent that fractal image compression is effective, but not more so than comparable standard vector quantisation techniques

    Connected component identification and cluster update on GPU

    Full text link
    Cluster identification tasks occur in a multitude of contexts in physics and engineering such as, for instance, cluster algorithms for simulating spin models, percolation simulations, segmentation problems in image processing, or network analysis. While it has been shown that graphics processing units (GPUs) can result in speedups of two to three orders of magnitude as compared to serial codes on CPUs for the case of local and thus naturally parallelized problems such as single-spin flip update simulations of spin models, the situation is considerably more complicated for the non-local problem of cluster or connected component identification. I discuss the suitability of different approaches of parallelization of cluster labeling and cluster update algorithms for calculations on GPU and compare to the performance of serial implementations.Comment: 15 pages, 14 figures, one table, submitted to PR

    From Malware Samples to Fractal Images: A New Paradigm for Classification. (Version 2.0, Previous version paper name: Have you ever seen malware?)

    Full text link
    To date, a large number of research papers have been written on the classification of malware, its identification, classification into different families and the distinction between malware and goodware. These works have been based on captured malware samples and have attempted to analyse malware and goodware using various techniques, including techniques from the field of artificial intelligence. For example, neural networks have played a significant role in these classification methods. Some of this work also deals with analysing malware using its visualisation. These works usually convert malware samples capturing the structure of malware into image structures, which are then the object of image processing. In this paper, we propose a very unconventional and novel approach to malware visualisation based on dynamic behaviour analysis, with the idea that the images, which are visually very interesting, are then used to classify malware concerning goodware. Our approach opens an extensive topic for future discussion and provides many new directions for research in malware analysis and classification, as discussed in conclusion. The results of the presented experiments are based on a database of 6 589 997 goodware, 827 853 potentially unwanted applications and 4 174 203 malware samples provided by ESET and selected experimental data (images, generating polynomial formulas and software generating images) are available on GitHub for interested readers. Thus, this paper is not a comprehensive compact study that reports the results obtained from comparative experiments but rather attempts to show a new direction in the field of visualisation with possible applications in malware analysis.Comment: This paper is under review; the section describing conversion from malware structure to fractal figure is temporarily erased here to protect our idea. It will be replaced by a full version when accepte

    Computer Vision for Timber Harvesting

    Get PDF
    corecore