35,172 research outputs found

    Wavelets and their use

    Get PDF
    This review paper is intended to give a useful guide for those who want to apply discrete wavelets in their practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to corresponding literature. The multiresolution analysis and fast wavelet transform became a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for achievement of a goal. Analysis of various functions with the help of wavelets allows to reveal fractal structures, singularities etc. Wavelet transform of operator expressions helps solve some equations. In practical applications one deals often with the discretized functions, and the problem of stability of wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves by some examples only. The authors would be grateful for any comments which improve this review paper and move us closer to the goal proclaimed in the first phrase of the abstract.Comment: 63 pages with 22 ps-figures, to be published in Physics-Uspekh

    Time-frequency analysis of chaotic systems

    Full text link
    We describe a method for analyzing the phase space structures of Hamiltonian systems. This method is based on a time-frequency decomposition of a trajectory using wavelets. The ridges of the time-frequency landscape of a trajectory, also called instantaneous frequencies, enable us to analyze the phase space structures. In particular, this method detects resonance trappings and transitions and allows a characterization of the notion of weak and strong chaos. We illustrate the method with the trajectories of the standard map and the hydrogen atom in crossed magnetic and elliptically polarized microwave fields.Comment: 36 pages, 18 figure

    Phase Harmonic Correlations and Convolutional Neural Networks

    Full text link
    A major issue in harmonic analysis is to capture the phase dependence of frequency representations, which carries important signal properties. It seems that convolutional neural networks have found a way. Over time-series and images, convolutional networks often learn a first layer of filters which are well localized in the frequency domain, with different phases. We show that a rectifier then acts as a filter on the phase of the resulting coefficients. It computes signal descriptors which are local in space, frequency and phase. The non-linear phase filter becomes a multiplicative operator over phase harmonics computed with a Fourier transform along the phase. We prove that it defines a bi-Lipschitz and invertible representation. The correlations of phase harmonics coefficients characterise coherent structures from their phase dependence across frequencies. For wavelet filters, we show numerically that signals having sparse wavelet coefficients can be recovered from few phase harmonic correlations, which provide a compressive representationComment: 26 pages, 8 figure

    Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds

    Full text link
    The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.Comment: 35 pages; 3 figures; 2 tables; v3: Revisions based on reviewer comment

    Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms

    Get PDF
    We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions--the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L^2(R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L^2(R^2), we then discuss a methodology for constructing 2D directional-selective complex wavelets. In particular, analogous to the HT correspondence between the components of the 1D counterpart, we relate the real and imaginary components of these complex wavelets using a multi-dimensional extension of the HT--the directional HT. Next, we construct a family of complex spline wavelets that resemble the directional Gabor functions proposed by Daugman. Finally, we present an efficient FFT-based filterbank algorithm for implementing the associated complex wavelet transform.Comment: 36 pages, 8 figure

    Wavelets: mathematics and applications

    Full text link
    The notion of wavelets is defined. It is briefly described {\it what} are wavelets, {\it how} to use them, {\it when} we do need them, {\it why} they are preferred and {\it where} they have been applied. Then one proceeds to the multiresolution analysis and fast wavelet transform as a standard procedure for dealing with discrete wavelets. It is shown which specific features of signals (functions) can be revealed by this analysis, but can not be found by other methods (e.g., by the Fourier expansion). Finally, some examples of practical application are given (in particular, to analysis of multiparticle production}. Rigorous proofs of mathematical statements are omitted, and the reader is referred to the corresponding literature.Comment: 16 pages, 5 figures, Latex, Phys. Atom. Nuc
    • …
    corecore