19,719 research outputs found

    Generalised state spaces and non-locality in fault tolerant quantum computing schemes

    Get PDF
    We develop connections between generalised notions of entanglement and quantum computational devices where the measurements available are restricted, either because they are noisy and/or because by design they are only along Pauli directions. By considering restricted measurements one can (by considering the dual positive operators) construct single particle state spaces that are different to the usual quantum state space. This leads to a modified notion of entanglement that can be very different to the quantum version (for example, Bell states can become separable). We use this approach to develop alternative methods of classical simulation that have strong connections to the study of non-local correlations: we construct noisy quantum computers that admit operations outside the Clifford set and can generate some forms of multiparty quantum entanglement, but are otherwise classical in that they can be efficiently simulated classically and cannot generate non-local statistics. Although the approach provides new regimes of noisy quantum evolution that can be efficiently simulated classically, it does not appear to lead to significant reductions of existing upper bounds to fault tolerance thresholds for common noise models.Comment: V2: 18 sides, 7 figures. Corrected two erroneous claims and one erroneous argumen

    Digital quantum simulation of lattice gauge theories in three spatial dimensions

    Full text link
    In the present work, we propose a scheme for digital formulation of lattice gauge theories with dynamical fermions in 3+1 dimensions. All interactions are obtained as a stroboscopic sequence of two-body interactions with an auxiliary system. This enables quantum simulations of lattice gauge theories where the magnetic four-body interactions arising in two and more spatial dimensions are obtained without the use of perturbation theory, thus resulting in stronger interactions compared with analogue approaches. The simulation scheme is applicable to lattice gauge theories with either compact or finite gauge groups. The required bounds on the digitization errors in lattice gauge theories, due to the sequential nature of the stroboscopic time evolution, are provided. Furthermore, an implementation of a lattice gauge theory with a non-abelian gauge group, the dihedral group D3D_{3}, is proposed employing the aforementioned simulation scheme using ultracold atoms in optical lattices.Comment: 38 pages, 5 figure

    Metric Structure of the Space of Two-Qubit Gates, Perfect Entanglers and Quantum Control

    Get PDF
    We derive expressions for the invariant length element and measure for the simple compact Lie group SU(4) in a coordinate system particularly suitable for treating entanglement in quantum information processing. Using this metric, we compute the invariant volume of the space of two-qubit perfect entanglers. We find that this volume corresponds to more than 84% of the total invariant volume of the space of two-qubit gates. This same metric is also used to determine the effective target sizes that selected gates will present in any quantum-control procedure designed to implement them.Comment: 27 pages, 5 figure

    Entropies from coarse-graining: convex polytopes vs. ellipsoids

    Full text link
    We examine the Boltzmann/Gibbs/Shannon SBGS\mathcal{S}_{BGS} and the non-additive Havrda-Charv\'{a}t / Dar\'{o}czy/Cressie-Read/Tsallis \ Sq\mathcal{S}_q \ and the Kaniadakis κ\kappa-entropy \ Sκ\mathcal{S}_\kappa \ from the viewpoint of coarse-graining, symplectic capacities and convexity. We argue that the functional form of such entropies can be ascribed to a discordance in phase-space coarse-graining between two generally different approaches: the Euclidean/Riemannian metric one that reflects independence and picks cubes as the fundamental cells and the symplectic/canonical one that picks spheres/ellipsoids for this role. Our discussion is motivated by and confined to the behaviour of Hamiltonian systems of many degrees of freedom. We see that Dvoretzky's theorem provides asymptotic estimates for the minimal dimension beyond which these two approaches are close to each other. We state and speculate about the role that dualities may play in this viewpoint.Comment: 63 pages. No figures. Standard LaTe

    A geometric theory of non-local two-qubit operations

    Get PDF
    We study non-local two-qubit operations from a geometric perspective. By applying a Cartan decomposition to su(4), we find that the geometric structure of non-local gates is a 3-Torus. We derive the invariants for local transformations, and connect these local invariants to the coordinates of the 3-Torus. Since different points on the 3-Torus may correspond to the same local equivalence class, we use the Weyl group theory to reduce the symmetry. We show that the local equivalence classes of two-qubit gates are in one-to-one correspondence with the points in a tetrahedron except on the base. We then study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some initially separable states. We provide criteria to determine whether a given two-qubit gate is a perfect entangler and establish a geometric description of perfect entanglers by making use of the tetrahedral representation of non-local gates. We find that exactly half the non-local gates are perfect entanglers. We also investigate the non-local operations generated by a given Hamiltonian. We first study the gates that can be directly generated by a Hamiltonian. Then we explicitly construct a quantum circuit that contains at most three non-local gates generated by a two-body interaction Hamiltonian, together with at most four local gates generated by single qubit terms. We prove that such a quantum circuit can simulate any arbitrary two-qubit gate exactly, and hence it provides an efficient implementation of universal quantum computation and simulation.Comment: 22 pages, 6 figure

    Foliated fracton order in the checkerboard model

    Get PDF
    In this work, we show that the checkerboard model exhibits the phenomenon of foliated fracton order. We introduce a renormalization group transformation for the model that utilizes toric code bilayers as an entanglement resource, and show how to extend the model to general three-dimensional manifolds. Furthermore, we use universal properties distilled from the structure of fractional excitations and ground-state entanglement to characterize the foliated fracton phase and find that it is the same as two copies of the X-cube model. Indeed, we demonstrate that the checkerboard model can be transformed into two copies of the X-cube model via an adiabatic deformation.Comment: 8 pages, 9 figure
    • …
    corecore