11 research outputs found

    Local Envy-Freeness in House Allocation Problems

    Get PDF
    International audienceWe study the fair division problem consisting in allocating one item per agent so as to avoid (or minimize) envy, in a setting where only agents connected in a given social network may experience envy. In a variant of the problem, agents themselves can be located on the network by the central authority. These problems turn out to be difficult even on very simple graph structures, but we identify several tractable cases. We further provide practical algorithms and experimental insights

    Envy-freeness in house allocation problems

    Get PDF
    We consider the house allocation problem, where m houses are to be assigned to n agents so that each agent gets exactly one house. We present a polynomial-time algorithm that determines whether an envy-free assignment exists, and if so, computes one such assignment. We also show that an envy-free assignment exists with high probability if the number of houses exceeds the number of agents by a logarithmic factor

    Fair Division through Information Withholding

    Full text link
    Envy-freeness up to one good (EF1) is a well-studied fairness notion for indivisible goods that addresses pairwise envy by the removal of at most one good. In the worst case, each pair of agents might require the (hypothetical) removal of a different good, resulting in a weak aggregate guarantee. We study allocations that are nearly envy-free in aggregate, and define a novel fairness notion based on information withholding. Under this notion, an agent can withhold (or hide) some of the goods in its bundle and reveal the remaining goods to the other agents. We observe that in practice, envy-freeness can be achieved by withholding only a small number of goods overall. We show that finding allocations that withhold an optimal number of goods is computationally hard even for highly restricted classes of valuations. In contrast to the worst-case results, our experiments on synthetic and real-world preference data show that existing algorithms for finding EF1 allocations withhold close-to-optimal number of goods.Comment: Full version of AAAI2020 paper. V2 has reviewers' comments incorporated. V3 consists of updates to Section 7.

    Fair Resource Sharing with Externailities

    Full text link
    We study a fair resource sharing problem, where a set of resources are to be shared among a set of agents. Each agent demands one resource and each resource can serve a limited number of agents. An agent cares about what resource they get as well as the externalities imposed by their mates, whom they share the same resource with. Apparently, the strong notion of envy-freeness, where no agent envies another for their resource or mates, cannot always be achieved and we show that even to decide the existence of such a strongly envy-free assignment is an intractable problem. Thus, a more interesting question is whether (and in what situations) a relaxed notion of envy-freeness, the Pareto envy-freeness, can be achieved: an agent i envies another agent j only when i envies both the resource and the mates of j. In particular, we are interested in a dorm assignment problem, where students are to be assigned to dorms with the same capacity and they have dichotomous preference over their dorm-mates. We show that when the capacity of the dorms is 2, a Pareto envy-free assignment always exists and we present a polynomial-time algorithm to compute such an assignment; nevertheless, the result fails to hold immediately when the capacities increase to 3, in which case even Pareto envy-freeness cannot be guaranteed. In addition to the existential results, we also investigate the implications of envy-freeness on proportionality in our model and show that envy-freeness in general implies approximations of proportionality

    The Price of Connectivity in Fair Division

    Full text link
    We study the allocation of indivisible goods that form an undirected graph and quantify the loss of fairness when we impose a constraint that each agent must receive a connected subgraph. Our focus is on well-studied fairness notions including envy-freeness and maximin share fairness. We introduce the price of connectivity to capture the largest gap between the graph-specific and the unconstrained maximin share, and derive bounds on this quantity which are tight for large classes of graphs in the case of two agents and for paths and stars in the general case. For instance, with two agents we show that for biconnected graphs it is possible to obtain at least 3/43/4 of the maximin share with connected allocations, while for the remaining graphs the guarantee is at most 1/21/2. In addition, we determine the optimal relaxation of envy-freeness that can be obtained with each graph for two agents, and characterize the set of trees and complete bipartite graphs that always admit an allocation satisfying envy-freeness up to one good (EF1) for three agents. Our work demonstrates several applications of graph-theoretic tools and concepts to fair division problems
    corecore