6 research outputs found

    Weighted cumulative residual Entropy Generating Function and its properties

    Full text link
    The study on the generating function approach to entropy become popular as it generates several well-known entropy measures discussed in the literature. In this work, we define the weighted cumulative residual entropy generating function (WCREGF) and study its properties. We then introduce the dynamic weighted cumulative residual entropy generating function (DWCREGF). It is shown that the DWCREGF determines the distribution uniquely. We study some characterization results using the relationship between the DWCREGF and the hazard rate and/or the mean residual life function. Using a characterization based on DWCREGF, we develop a new goodness fit test for Rayleigh distribution. A Monte Carlo simulation study is conducted to evaluate the proposed test. Finally, the test is illustrated using two real data sets.Comment: arXiv admin note: text overlap with arXiv:2211.0548

    Cumulative Information Generating Function and Generalized Gini Functions

    Full text link
    We introduce and study the cumulative information generating function, which provides a unifying mathematical tool suitable to deal with classical and fractional entropies based on the cumulative distribution function and on the survival function. Specifically, after establishing its main properties and some bounds, we show that it is a variability measure itself that extends the Gini mean semi-difference. We also provide (i) an extension of such a measure, based on distortion functions, and (ii) a weighted version based on a mixture distribution. Furthermore, we explore some connections with the reliability of kk-out-of-nn systems and with stress-strength models for multi-component systems. Also, we address the problem of extending the cumulative information generating function to higher dimensions.Comment: 25 pages, 1 figure, submitted for publication on November 30, 202

    What is the Fourier Transform of a Spatial Point Process?

    Get PDF
    This paper determines how to define a discretely implemented Fourier transform when analysing an observed spatial point process. To develop this transform we answer four questions; first what is the natural definition of a Fourier transform, and what are its spectral moments, second we calculate fourth order moments of the Fourier transform using Campbell’s theorem. Third we determine how to implement tapering, an important component for spectral analysis of other stochastic processes. Fourth we answer the question of how to produce an isotropic representation of the Fourier transform of the process. This determines the basic spectral properties of an observed spatial point process

    A precise bare simulation approach to the minimization of some distances. Foundations

    Full text link
    In information theory -- as well as in the adjacent fields of statistics, machine learning, artificial intelligence, signal processing and pattern recognition -- many flexibilizations of the omnipresent Kullback-Leibler information distance (relative entropy) and of the closely related Shannon entropy have become frequently used tools. To tackle corresponding constrained minimization (respectively maximization) problems by a newly developed dimension-free bare (pure) simulation method, is the main goal of this paper. Almost no assumptions (like convexity) on the set of constraints are needed, within our discrete setup of arbitrary dimension, and our method is precise (i.e., converges in the limit). As a side effect, we also derive an innovative way of constructing new useful distances/divergences. To illustrate the core of our approach, we present numerous examples. The potential for widespread applicability is indicated, too; in particular, we deliver many recent references for uses of the involved distances/divergences and entropies in various different research fields (which may also serve as an interdisciplinary interface)

    Local Entropy Statistics for Point Processes

    No full text
    International audienc
    corecore