10,256 research outputs found

    Compensating inaccurate annotations to train 3D facial landmark localisation models

    Get PDF
    In this paper we investigate the impact of inconsistency in manual annotations when they are used to train automatic models for 3D facial landmark localization. We start by showing that it is possible to objectively measure the consistency of annotations in a database, provided that it contains replicates (i.e. repeated scans from the same person). Applying such measure to the widely used FRGC database we find that manual annotations currently available are suboptimal and can strongly impair the accuracy of automatic models learnt therefrom. To address this issue, we present a simple algorithm to automatically correct a set of annotations and show that it can help to significantly improve the accuracy of the models in terms of landmark localization errors. This improvement is observed even when errors are measured with respect to the original (not corrected) annotations. However, we also show that if errors are computed against an alternative set of manual annotations with higher consistency, the accuracy of the models constructed using the corrections from the presented algorithm tends to converge to the one achieved by building the models on the alternative,more consistent set

    Efficient smile detection by Extreme Learning Machine

    Get PDF
    Smile detection is a specialized task in facial expression analysis with applications such as photo selection, user experience analysis, and patient monitoring. As one of the most important and informative expressions, smile conveys the underlying emotion status such as joy, happiness, and satisfaction. In this paper, an efficient smile detection approach is proposed based on Extreme Learning Machine (ELM). The faces are first detected and a holistic flow-based face registration is applied which does not need any manual labeling or key point detection. Then ELM is used to train the classifier. The proposed smile detector is tested with different feature descriptors on publicly available databases including real-world face images. The comparisons against benchmark classifiers including Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) suggest that the proposed ELM based smile detector in general performs better and is very efficient. Compared to state-of-the-art smile detector, the proposed method achieves competitive results without preprocessing and manual registration

    Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization

    Full text link
    Many artificial intelligence (AI) problems naturally map to NP-hard optimization problems. This has the interesting consequence that enabling human-level capability in machines often requires systems that can handle formally intractable problems. This issue can sometimes (but possibly not always) be resolved by building special-purpose heuristic algorithms, tailored to the problem in question. Because of the continued difficulties in automating certain tasks that are natural for humans, there remains a strong motivation for AI researchers to investigate and apply new algorithms and techniques to hard AI problems. Recently a novel class of relevant algorithms that require quantum mechanical hardware have been proposed. These algorithms, referred to as quantum adiabatic algorithms, represent a new approach to designing both complete and heuristic solvers for NP-hard optimization problems. In this work we describe how to formulate image recognition, which is a canonical NP-hard AI problem, as a Quadratic Unconstrained Binary Optimization (QUBO) problem. The QUBO format corresponds to the input format required for D-Wave superconducting adiabatic quantum computing (AQC) processors.Comment: 7 pages, 3 figure
    corecore