3,172 research outputs found

    On the Convergence of Alternating Least Squares Optimisation in Tensor Format Representations

    Full text link
    The approximation of tensors is important for the efficient numerical treatment of high dimensional problems, but it remains an extremely challenging task. One of the most popular approach to tensor approximation is the alternating least squares method. In our study, the convergence of the alternating least squares algorithm is considered. The analysis is done for arbitrary tensor format representations and based on the multiliearity of the tensor format. In tensor format representation techniques, tensors are approximated by multilinear combinations of objects lower dimensionality. The resulting reduction of dimensionality not only reduces the amount of required storage but also the computational effort.Comment: arXiv admin note: text overlap with arXiv:1503.0543

    Multi-resolution Low-rank Tensor Formats

    Full text link
    We describe a simple, black-box compression format for tensors with a multiscale structure. By representing the tensor as a sum of compressed tensors defined on increasingly coarse grids, we capture low-rank structures on each grid-scale, and we show how this leads to an increase in compression for a fixed accuracy. We devise an alternating algorithm to represent a given tensor in the multiresolution format and prove local convergence guarantees. In two dimensions, we provide examples that show that this approach can beat the Eckart-Young theorem, and for dimensions higher than two, we achieve higher compression than the tensor-train format on six real-world datasets. We also provide results on the closedness and stability of the tensor format and discuss how to perform common linear algebra operations on the level of the compressed tensors.Comment: 29 pages, 9 figure

    Rank-1 Tensor Approximation Methods and Application to Deflation

    Full text link
    Because of the attractiveness of the canonical polyadic (CP) tensor decomposition in various applications, several algorithms have been designed to compute it, but efficient ones are still lacking. Iterative deflation algorithms based on successive rank-1 approximations can be used to perform this task, since the latter are rather easy to compute. We first present an algebraic rank-1 approximation method that performs better than the standard higher-order singular value decomposition (HOSVD) for three-way tensors. Second, we propose a new iterative rank-1 approximation algorithm that improves any other rank-1 approximation method. Third, we describe a probabilistic framework allowing to study the convergence of deflation CP decomposition (DCPD) algorithms based on successive rank-1 approximations. A set of computer experiments then validates theoretical results and demonstrates the efficiency of DCPD algorithms compared to other ones

    Finding a low-rank basis in a matrix subspace

    Full text link
    For a given matrix subspace, how can we find a basis that consists of low-rank matrices? This is a generalization of the sparse vector problem. It turns out that when the subspace is spanned by rank-1 matrices, the matrices can be obtained by the tensor CP decomposition. For the higher rank case, the situation is not as straightforward. In this work we present an algorithm based on a greedy process applicable to higher rank problems. Our algorithm first estimates the minimum rank by applying soft singular value thresholding to a nuclear norm relaxation, and then computes a matrix with that rank using the method of alternating projections. We provide local convergence results, and compare our algorithm with several alternative approaches. Applications include data compression beyond the classical truncated SVD, computing accurate eigenvectors of a near-multiple eigenvalue, image separation and graph Laplacian eigenproblems

    Alternating least squares as moving subspace correction

    Full text link
    In this note we take a new look at the local convergence of alternating optimization methods for low-rank matrices and tensors. Our abstract interpretation as sequential optimization on moving subspaces yields insightful reformulations of some known convergence conditions that focus on the interplay between the contractivity of classical multiplicative Schwarz methods with overlapping subspaces and the curvature of low-rank matrix and tensor manifolds. While the verification of the abstract conditions in concrete scenarios remains open in most cases, we are able to provide an alternative and conceptually simple derivation of the asymptotic convergence rate of the two-sided block power method of numerical algebra for computing the dominant singular subspaces of a rectangular matrix. This method is equivalent to an alternating least squares method applied to a distance function. The theoretical results are illustrated and validated by numerical experiments.Comment: 20 pages, 4 figure
    • …
    corecore