21,431 research outputs found

    PEA265: Perceptual Assessment of Video Compression Artifacts

    Full text link
    The most widely used video encoders share a common hybrid coding framework that includes block-based motion estimation/compensation and block-based transform coding. Despite their high coding efficiency, the encoded videos often exhibit visually annoying artifacts, denoted as Perceivable Encoding Artifacts (PEAs), which significantly degrade the visual Qualityof- Experience (QoE) of end users. To monitor and improve visual QoE, it is crucial to develop subjective and objective measures that can identify and quantify various types of PEAs. In this work, we make the first attempt to build a large-scale subjectlabelled database composed of H.265/HEVC compressed videos containing various PEAs. The database, namely the PEA265 database, includes 4 types of spatial PEAs (i.e. blurring, blocking, ringing and color bleeding) and 2 types of temporal PEAs (i.e. flickering and floating). Each containing at least 60,000 image or video patches with positive and negative labels. To objectively identify these PEAs, we train Convolutional Neural Networks (CNNs) using the PEA265 database. It appears that state-of-theart ResNeXt is capable of identifying each type of PEAs with high accuracy. Furthermore, we define PEA pattern and PEA intensity measures to quantify PEA levels of compressed video sequence. We believe that the PEA265 database and our findings will benefit the future development of video quality assessment methods and perceptually motivated video encoders.Comment: 10 pages,15 figures,4 table

    Light Field Denoising via Anisotropic Parallax Analysis in a CNN Framework

    Full text link
    Light field (LF) cameras provide perspective information of scenes by taking directional measurements of the focusing light rays. The raw outputs are usually dark with additive camera noise, which impedes subsequent processing and applications. We propose a novel LF denoising framework based on anisotropic parallax analysis (APA). Two convolutional neural networks are jointly designed for the task: first, the structural parallax synthesis network predicts the parallax details for the entire LF based on a set of anisotropic parallax features. These novel features can efficiently capture the high frequency perspective components of a LF from noisy observations. Second, the view-dependent detail compensation network restores non-Lambertian variation to each LF view by involving view-specific spatial energies. Extensive experiments show that the proposed APA LF denoiser provides a much better denoising performance than state-of-the-art methods in terms of visual quality and in preservation of parallax details

    Texture wear analysis in textile floor coverings by using depth information

    Get PDF
    Considerable industrial and academic interest is addressed to automate the quality inspection of textile floor coverings, mostly using intensity images. Recently, the use of depth information has been explored to better capture the 3D structure of the surface. In this paper, we present a comparison of features extracted from three texture analysis techniques. The evaluation is based on how well the algorithms allow a good linear ranking and a good discriminance of consecutive wear labels. The results show that the use of Local Binary Patterns techniques result in a better ranking of the wear labels as well as in a higher amount of discrimination between features related to consecutive degrees of wear
    • …
    corecore