4,067 research outputs found

    Local Prime Factor Decomposition of Approximate Strong Product Graphs: Local Prime Factor Decompositionof Approximate Strong Product Graphs

    Get PDF
    In practice, graphs often occur as perturbed product structures, so-called approximate graph products. The practical application of the well-known prime factorization algorithms is therefore limited, since most graphs are prime, although they can have a product-like structure. This work is concerned with the strong graph product. Since strong product graphs G contain subgraphs that are itself products of subgraphs of the underlying factors of G, we follow the idea to develop local approaches that cover a graph by factorizable patches and then use this information to derive the global factors. First, we investigate the local structure of strong product graphs and introduce the backbone B(G) of a graph G and the so-called S1-condition. Both concepts play a central role for determining the prime factors of a strong product graph in a unique way. Then, we discuss several graph classes, in detail, NICE, CHIC and locally unrefined graphs. For each class we construct local, quasi-linear time prime factorization algorithms. Combining these results, we then derive a new local prime factorization algorithm for all graphs. Finally, we discuss approximate graph products. We use the new local factorization algorithm to derive a method for the recognition of approximate graph products. Furthermore, we evaluate the performance of this algorithm on a sample of approximate graph products

    Strong Products of Hypergraphs: Unique Prime Factorization Theorems and Algorithms

    Full text link
    It is well-known that all finite connected graphs have a unique prime factor decomposition (PFD) with respect to the strong graph product which can be computed in polynomial time. Essential for the PFD computation is the construction of the so-called Cartesian skeleton of the graphs under investigation. In this contribution, we show that every connected thin hypergraph H has a unique prime factorization with respect to the normal and strong (hypergraph) product. Both products coincide with the usual strong graph product whenever H is a graph. We introduce the notion of the Cartesian skeleton of hypergraphs as a natural generalization of the Cartesian skeleton of graphs and prove that it is uniquely defined for thin hypergraphs. Moreover, we show that the Cartesian skeleton of hypergraphs can be determined in O(|E|^2) time and that the PFD can be computed in O(|V|^2|E|) time, for hypergraphs H = (V,E) with bounded degree and bounded rank
    • …
    corecore