381 research outputs found

    Line graphs and 22-geodesic transitivity

    Full text link
    For a graph Γ\Gamma, a positive integer ss and a subgroup G\leq \Aut(\Gamma), we prove that GG is transitive on the set of ss-arcs of Γ\Gamma if and only if Γ\Gamma has girth at least 2(s−1)2(s-1) and GG is transitive on the set of (s−1)(s-1)-geodesics of its line graph. As applications, we first prove that the only non-complete locally cyclic 22-geodesic transitive graphs are the complete multipartite graph K3[2]K_{3[2]} and the icosahedron. Secondly we classify 2-geodesic transitive graphs of valency 4 and girth 3, and determine which of them are geodesic transitive

    Descriptive Analysis of Characteristics: A Case Study of a Phone Call Network Graph

    Get PDF
    Nowadays, systematic collection of data has necessitated a detailed statistical analysis as a necessary tool to make a mathematical characterization of them with the purpose of gathering information about the present or the future. Our aim in this paper is to analyze a landline phone call network graph from the perspective of descriptive analysis. We explore the characteristics and structural properties of the network graph constructed using an anonymous collection of data gathered from a Call Data Records of a telecommunication operator center located in south of Albania. The R statistical computing platform is used for network graph analysis

    Topics in social network analysis and network science

    Full text link
    This chapter introduces statistical methods used in the analysis of social networks and in the rapidly evolving parallel-field of network science. Although several instances of social network analysis in health services research have appeared recently, the majority involve only the most basic methods and thus scratch the surface of what might be accomplished. Cutting-edge methods using relevant examples and illustrations in health services research are provided

    Information Diffusion on Social Networks

    Get PDF
    In this thesis we model the diffusion of information on social networks. A game played on a specific type of graph generator, the iterated local transitivity model, is examined. We study how the dynamics of the game change as the graph grows, and the relationship between properties of the game on a graph initially and properties of the game later in the graph’s development. We show that, given certain conditions, for the iterated local transitivity model it is possible to predict the existence of a Nash equilibrium at any point in the graph’s growth. We give sufficient conditions for the existence of Nash Equilibria on star graphs, cliques and trees. We give some results on potential games on the iterated local transitivity model. Chapter 2 provides an introduction to graph properties, and describes various early graph models. Chapter 3 describes some models for online social networks, and introduces the iterated local transitivity model which we use later in the thesis. In Chapter 4 various models for games played on networks are examined. We study a model for competitive information diffusion on star graphs, cliques and trees, and we provide conditions for the existence of Nash Equilibria on these. This model for competitive information diffusion is studied in detail for the iterated local transitivity model in Chapter 5. We discuss potential games in Chapter 6 and their existence on the iterated local transitivity model. We conclude with some suggestions on how to extend and develop upon the work done in this thesis

    Geometric aspects of 2-walk-regular graphs

    Full text link
    A tt-walk-regular graph is a graph for which the number of walks of given length between two vertices depends only on the distance between these two vertices, as long as this distance is at most tt. Such graphs generalize distance-regular graphs and tt-arc-transitive graphs. In this paper, we will focus on 1- and in particular 2-walk-regular graphs, and study analogues of certain results that are important for distance regular graphs. We will generalize Delsarte's clique bound to 1-walk-regular graphs, Godsil's multiplicity bound and Terwilliger's analysis of the local structure to 2-walk-regular graphs. We will show that 2-walk-regular graphs have a much richer combinatorial structure than 1-walk-regular graphs, for example by proving that there are finitely many non-geometric 2-walk-regular graphs with given smallest eigenvalue and given diameter (a geometric graph is the point graph of a special partial linear space); a result that is analogous to a result on distance-regular graphs. Such a result does not hold for 1-walk-regular graphs, as our construction methods will show
    • …
    corecore