7,710 research outputs found

    Joint Link Scheduling and Routing for Load Balancing in STDMA Wireless Mesh Networks

    Get PDF
    In wireless mesh networks, it is known to be effective to use a TDMA based MAC than a contention-based CSMA. In addition, if spatial TDMA is used, network performance can be improved further because of its spatial reuse effect. However this scheme still has a disadvantage in the system performance aspect without a load-balanced routing because the resource of links that are not used is wasted and frequently used links are out of resources. That is, the number of available flows in network is limited because load balancing is not performed. In this paper, we propose joint link scheduling and routing through a cross-layer scheme. For this, we propose a load balancing routing method to maximize available resources under the given traffic pattern and scheduling method for maximizing link utilization on the given route. These two methods are iterated until an optimized solution can be obtained. The proposed algorithm can be formulated using a mathematical LP problem and we show that it is very effective for load balancing compared to simple adoption of IEEE 802.11s which is a standard TDMA protocol in wireless mesh network. If the proposed algorithm is applied to initial design solution such as Smart Grid, the number of available flows can be increased and the load on each link can be balanced

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Towards Optimal Distributed Node Scheduling in a Multihop Wireless Network through Local Voting

    Full text link
    In a multihop wireless network, it is crucial but challenging to schedule transmissions in an efficient and fair manner. In this paper, a novel distributed node scheduling algorithm, called Local Voting, is proposed. This algorithm tries to semi-equalize the load (defined as the ratio of the queue length over the number of allocated slots) through slot reallocation based on local information exchange. The algorithm stems from the finding that the shortest delivery time or delay is obtained when the load is semi-equalized throughout the network. In addition, we prove that, with Local Voting, the network system converges asymptotically towards the optimal scheduling. Moreover, through extensive simulations, the performance of Local Voting is further investigated in comparison with several representative scheduling algorithms from the literature. Simulation results show that the proposed algorithm achieves better performance than the other distributed algorithms in terms of average delay, maximum delay, and fairness. Despite being distributed, the performance of Local Voting is also found to be very close to a centralized algorithm that is deemed to have the optimal performance

    On the complexity of routing in wireless multihop network

    Get PDF
    Wireless backbone networks represent an attractive alternative to wired networks in situations where cost, speed of deployment, and flexibility in network design are important. In typical configurations, users connect to wireless routers of the backbone network, which then redirect the traffic to one of the existing network gateways. To improve the network performance, wireless backbone routers redirect their traffic to the network gateways so as to maximize amount of traffic that can be sup- ported by the network. In this paper, we prove that this problem is NP-hard as a result of the wireless interference that is created between geographically close transmission links. We consequently design and investigate the performance of interference-aware algorithms suitable for multi-channel environments against more traditional routing approaches. We evaluate their performance in simulated environments based on data taken from existing networks, and show that interference-based heuristics exhibit advantageous performance in non-uniform deployment

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI
    • …
    corecore