6,241 research outputs found

    Live Feeling on Movement of an Autonomous Robot Using a Biological Signal

    Full text link

    Asimov's Coming Back

    Get PDF
    Ever since the word ‘ROBOT’ first appeared in a science\ud fiction in 1921, scientists and engineers have been trying\ud different ways to create it. Present technologies in\ud mechanical and electrical engineering makes it possible\ud to have robots in such places as industrial manufacturing\ud and assembling lines. Although they are\ud essentially robotic arms or similarly driven by electrical\ud power and signal control, they could be treated the\ud primitive pioneers in application. Researches in the\ud laboratories go much further. Interdisciplines are\ud directing the evolution of more advanced robots. Among these are artificial\ud intelligence, computational neuroscience, mathematics and robotics. These disciplines\ud come closer as more complex problems emerge.\ud From a robot’s point of view, three basic abilities are needed. They are thinking\ud and memory, sensory perceptions, control and behaving. These are capabilities we\ud human beings have to adapt ourselves to the environment. Although\ud researches on robots, especially on intelligent thinking, progress slowly, a revolution\ud for biological inspired robotics is spreading out in the laboratories all over the world

    From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3)

    Get PDF
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting the increasing importance of synthetic neurorobotics studies for cognitive science and philosophy of mind going forward, finally in regards to most- and myth-consciousness

    EMOBOT: A Robot Control Architecture Based on Emotion-Like Internal Values

    Get PDF

    Mobiles Robots - Past Present and Future

    Get PDF

    Can my robotic home cleaner be happy? Issues about emotional expression in non-bio-inspired robots.

    Get PDF
    In many robotic applications a robot body should have a functional shape that cannot include bio-inspired elements, but it would still be important that the robot can express emotions, moods, or a character, to make it acceptable, and to involve its users. Dynamic signals from movement can be exploited to provide this expression, while the robot is acting to perform its task. A research effort has been started to find general emotion expression models for actions that could be applied to any kind of robot to obtain believable and easily detectable emotional expressions. On his path, the need for a unified representation of emotional expression emerged. A framework to define action characteristics that could be used to represent emotions is proposed in this paper. Guidelines are provided to identify quantitative models and numerical values for parameters, which can be used to design and engineer emotional robot actions. A set of robots having different shapes, movement possibilities, and goals have been implemented following these guidelines. Thanks to the proposed framework, different models to implement emotional expression could now be compared in a sound way. The question mentioned in the title can now be answered in a justified way
    • …
    corecore