99,563 research outputs found
Lithium and the Foreseeable Future
This paper aims to clarify the uncertainties regarding worldwide lithium resource availability in the years to come. Previous studies made on the subject are presented with some ambiguity and this work intends to fill the gaps. The information and data presented throughout this script with respect to global lithium resources and reserves are mostly based on data released by the United States Geological Survey (USGS). Lithium resource availability in the future is a point of paramount significance primarily for the automotive, portable electronics, and the power generation industry. Since, a change of supply would ultimately affect the price of lithium, which would then affect the industries mentioned. Theoretical scenarios and predictions about future lithium supply and demand are presented at the latter part of this paper intended to give the reader a better understanding of the actual size of the total global lithium resources
Recommended from our members
Mechanism of Exact Transition between Cationic and Anionic Redox Activities in Cathode Material Li2FeSiO4.
The discovery of anion redox activity is promising for boosting the capacity of lithium ion battery (LIB) cathodes. However, fundamental understanding of the mechanisms that trigger the anionic redox is still lacking. Here, using hybrid density functional study combined with experimental soft X-ray absorption spectroscopy (sXAS) measurements, we unambiguously proved that Li(2- x)FeSiO4 performs sequent cationic and anionic redox activity through delithiation. Specifically, Fe2+ is oxidized to Fe3+ during the first Li ion extraction per formula unit (f.u.), while the second Li ion extraction triggered the oxygen redox exclusively. Cationic and anionic redox result in electron and hole polaron states, respectively, explaining the poor conductivity of Li(2- x)FeSiO4 noted by previous experiments. In contrast, other cathode materials in this family exhibit diversity of the redox process. Li2MnSiO4 shows double cationic redox (Mn2+-Mn4+) during the whole delithiation, while Li2CoSiO4 shows simultaneous cationic and anionic redox. The present finding not only provides new insights into the oxygen redox activity in polyanionic compounds for rechargeable batteries but also sheds light on the future design of high-capacity rechargeable batteries
DEVELOPMENT OF TINB2O7 ANODE FOR LITHIUM ION BATTERY ANODES
I have received 1200 dollars research scholarship.With an increase in gasoline price and greenhouse gas emissions, hybrid electrical vehicles (HEV) and pure electric vehicles (EV) have been commercialized in auto market. Li-ion batteries have become the dominant power source for the EV applications because of many advantages such as high energy densities, less pollution, stable performance and long cycle life. However, the market for HEVs and EVs need to overcome many technical issues. For example, energy densities and cycle life of Li-ion batteries need to be improved at low temperature for electrical vehicle applications. TiNb2O7 (TNO) electrode-based battery can be a good choice in order to improve the energy densities and cycle life. The original anode-based batteries are Li4Ti5O12 (LTO) anode-based batteries. I have made a comparison between TNO anode and LTO anode for Li-ion batteries. The energy densities of TNO anode-based batteries are around 350Wh/L and the energy densities of LTO anode-based batteries are around 177Wh/L. It means that TNO anode-based batteries have a higher energy density than LTO anode-based batteries. In addition, TNO anode batteries have a longer cycle life and shorter charging time than LTO anode batteries. The purpose of this research is to identify whether the TNO anodes-based batteries have the advantage of high energy and power densities for Li-ion batteries application. First, I need to identify whether the TNO anode can be run in normal cycling battery by doing half-cell test. I have done the half-cell test which consist of TNO anode and metallic Li as a counter electrode. The voltage profile obtained from half-cell test fits well with TNO electrode. In addition, cycle life tendency corresponding to high-density TNO composite electrode which indicate the TNO electrode can be used in normal cycling battery. In the future research study, I will identify the important parameters that lead to poor performance in the low-temperature condition and demonstrate the performance of TiNb2O7 anodes-based batteries has been improved in the low temperature condition.College of Engineering Research OfficeNo embargoAcademic Major: Mechanical Engineerin
Rotating models of young solar-type stars : Exploring braking laws and angular momentum transport processes
We study the predicted rotational evolution of solar-type stars from the
pre-main sequence to the solar age with 1D rotating evolutionary models
including physical ingredients. We computed rotating evolution models of
solar-type stars including an external stellar wind torque and internal
transport of angular momentum following the method of Maeder and Zahn with the
code STAREVOL. We explored different formalisms and prescriptions available
from the literature. We tested the predictions of the models against recent
rotational period data from extensive photometric surveys, lithium abundances
of solar-mass stars in young clusters, and the helioseismic rotation profile of
the Sun. We find a best-matching combination of prescriptions for both internal
transport and surface extraction of angular momentum. This combination provides
a very good fit to the observed evolution of rotational periods for solar-type
stars from early evolution to the age of the Sun. Additionally, we show that
fast rotators experience a stronger coupling between their radiative region and
the convective envelope. Regardless of the set of prescriptions, however, we
cannot simultaneously reproduce surface angular velocity and the internal
profile of the Sun or the evolution of lithium abundance. We confirm the idea
that additional transport mechanisms must occur in solar-type stars until they
reach the age of the Sun. Whether these processes are the same as those needed
to explain recent asteroseismic data in more advanced evolutionary phases is
still an open question.Comment: 16 pages, 16 figures, accepted for publication in A&
Recommended from our members
Unraveling the Cationic and Anionic Redox Reactions in a Conventional Layered Oxide Cathode
Increasing interest in high-energy lithium-ion batteries has triggered the demand to clarify the reaction mechanism in battery cathodes during high-potential operation. However, the reaction mechanism often involves both transition-metal and oxygen activities that remain elusive. Here we report a comprehensive study of both cationic and anionic redox mechanisms of LiNiO2 nearly full delithiation. Selection of pure LiNiO2 removes the complication of multiple transition metals. Using combined X-ray absorption spectroscopy, resonant inelastic X-ray scattering, and operando differential electrochemical mass spectrometry, we are able to clarify the redox reactions of transition metals in the bulk and at the surface, reversible lattice oxygen redox, and irreversible oxygen release associated with surface reactions. Many findings presented here bring attention to different types of oxygen activities and metal-oxygen interactions in layered oxides, which are of crucial importance to the advancement of a Ni-rich layered oxide cathode for high capacity and long cycling performance
- …
