108 research outputs found

    Opportunities and Challenges for ChatGPT and Large Language Models in Biomedicine and Health

    Full text link
    ChatGPT has drawn considerable attention from both the general public and domain experts with its remarkable text generation capabilities. This has subsequently led to the emergence of diverse applications in the field of biomedicine and health. In this work, we examine the diverse applications of large language models (LLMs), such as ChatGPT, in biomedicine and health. Specifically we explore the areas of biomedical information retrieval, question answering, medical text summarization, information extraction, and medical education, and investigate whether LLMs possess the transformative power to revolutionize these tasks or whether the distinct complexities of biomedical domain presents unique challenges. Following an extensive literature survey, we find that significant advances have been made in the field of text generation tasks, surpassing the previous state-of-the-art methods. For other applications, the advances have been modest. Overall, LLMs have not yet revolutionized the biomedicine, but recent rapid progress indicates that such methods hold great potential to provide valuable means for accelerating discovery and improving health. We also find that the use of LLMs, like ChatGPT, in the fields of biomedicine and health entails various risks and challenges, including fabricated information in its generated responses, as well as legal and privacy concerns associated with sensitive patient data. We believe this first-of-its-kind survey can provide a comprehensive overview to biomedical researchers and healthcare practitioners on the opportunities and challenges associated with using ChatGPT and other LLMs for transforming biomedicine and health

    MultiGBS: A multi-layer graph approach to biomedical summarization

    Full text link
    Automatic text summarization methods generate a shorter version of the input text to assist the reader in gaining a quick yet informative gist. Existing text summarization methods generally focus on a single aspect of text when selecting sentences, causing the potential loss of essential information. In this study, we propose a domain-specific method that models a document as a multi-layer graph to enable multiple features of the text to be processed at the same time. The features we used in this paper are word similarity, semantic similarity, and co-reference similarity, which are modelled as three different layers. The unsupervised method selects sentences from the multi-layer graph based on the MultiRank algorithm and the number of concepts. The proposed MultiGBS algorithm employs UMLS and extracts the concepts and relationships using different tools such as SemRep, MetaMap, and OGER. Extensive evaluation by ROUGE and BERTScore shows increased F-measure values

    The research of the constructing of the port of Xiamen to become a container pivot port

    Get PDF
    • …
    corecore