689 research outputs found

    An Efficient Algorithm for Enumerating Chordless Cycles and Chordless Paths

    Full text link
    A chordless cycle (induced cycle) CC of a graph is a cycle without any chord, meaning that there is no edge outside the cycle connecting two vertices of the cycle. A chordless path is defined similarly. In this paper, we consider the problems of enumerating chordless cycles/paths of a given graph G=(V,E),G=(V,E), and propose algorithms taking O(E)O(|E|) time for each chordless cycle/path. In the existing studies, the problems had not been deeply studied in the theoretical computer science area, and no output polynomial time algorithm has been proposed. Our experiments showed that the computation time of our algorithms is constant per chordless cycle/path for non-dense random graphs and real-world graphs. They also show that the number of chordless cycles is much smaller than the number of cycles. We applied the algorithm to prediction of NMR (Nuclear Magnetic Resonance) spectra, and increased the accuracy of the prediction

    Fine-grained Search Space Classification for Hard Enumeration Variants of Subset Problems

    Full text link
    We propose a simple, powerful, and flexible machine learning framework for (i) reducing the search space of computationally difficult enumeration variants of subset problems and (ii) augmenting existing state-of-the-art solvers with informative cues arising from the input distribution. We instantiate our framework for the problem of listing all maximum cliques in a graph, a central problem in network analysis, data mining, and computational biology. We demonstrate the practicality of our approach on real-world networks with millions of vertices and edges by not only retaining all optimal solutions, but also aggressively pruning the input instance size resulting in several fold speedups of state-of-the-art algorithms. Finally, we explore the limits of scalability and robustness of our proposed framework, suggesting that supervised learning is viable for tackling NP-hard problems in practice.Comment: AAAI 201

    Shared-Memory Parallel Maximal Clique Enumeration

    Get PDF
    We present shared-memory parallel methods for Maximal Clique Enumeration (MCE) from a graph. MCE is a fundamental and well-studied graph analytics task, and is a widely used primitive for identifying dense structures in a graph. Due to its computationally intensive nature, parallel methods are imperative for dealing with large graphs. However, surprisingly, there do not yet exist scalable and parallel methods for MCE on a shared-memory parallel machine. In this work, we present efficient shared-memory parallel algorithms for MCE, with the following properties: (1) the parallel algorithms are provably work-efficient relative to a state-of-the-art sequential algorithm (2) the algorithms have a provably small parallel depth, showing that they can scale to a large number of processors, and (3) our implementations on a multicore machine shows a good speedup and scaling behavior with increasing number of cores, and are substantially faster than prior shared-memory parallel algorithms for MCE.Comment: 10 pages, 3 figures, proceedings of the 25th IEEE International Conference on. High Performance Computing, Data, and Analytics (HiPC), 201

    A Novel Approach to Finding Near-Cliques: The Triangle-Densest Subgraph Problem

    Full text link
    Many graph mining applications rely on detecting subgraphs which are near-cliques. There exists a dichotomy between the results in the existing work related to this problem: on the one hand the densest subgraph problem (DSP) which maximizes the average degree over all subgraphs is solvable in polynomial time but for many networks fails to find subgraphs which are near-cliques. On the other hand, formulations that are geared towards finding near-cliques are NP-hard and frequently inapproximable due to connections with the Maximum Clique problem. In this work, we propose a formulation which combines the best of both worlds: it is solvable in polynomial time and finds near-cliques when the DSP fails. Surprisingly, our formulation is a simple variation of the DSP. Specifically, we define the triangle densest subgraph problem (TDSP): given G(V,E)G(V,E), find a subset of vertices SS^* such that τ(S)=maxSVt(S)S\tau(S^*)=\max_{S \subseteq V} \frac{t(S)}{|S|}, where t(S)t(S) is the number of triangles induced by the set SS. We provide various exact and approximation algorithms which the solve the TDSP efficiently. Furthermore, we show how our algorithms adapt to the more general problem of maximizing the kk-clique average density. Finally, we provide empirical evidence that the TDSP should be used whenever the output of the DSP fails to output a near-clique.Comment: 42 page

    On combinatorial optimisation in analysis of protein-protein interaction and protein folding networks

    Get PDF
    Abstract: Protein-protein interaction networks and protein folding networks represent prominent research topics at the intersection of bioinformatics and network science. In this paper, we present a study of these networks from combinatorial optimisation point of view. Using a combination of classical heuristics and stochastic optimisation techniques, we were able to identify several interesting combinatorial properties of biological networks of the COSIN project. We obtained optimal or near-optimal solutions to maximum clique and chromatic number problems for these networks. We also explore patterns of both non-overlapping and overlapping cliques in these networks. Optimal or near-optimal solutions to partitioning of these networks into non-overlapping cliques and to maximum independent set problem were discovered. Maximal cliques are explored by enumerative techniques. Domination in these networks is briefly studied, too. Applications and extensions of our findings are discussed

    Parallel Maximum Clique Algorithms with Applications to Network Analysis and Storage

    Full text link
    We propose a fast, parallel maximum clique algorithm for large sparse graphs that is designed to exploit characteristics of social and information networks. The method exhibits a roughly linear runtime scaling over real-world networks ranging from 1000 to 100 million nodes. In a test on a social network with 1.8 billion edges, the algorithm finds the largest clique in about 20 minutes. Our method employs a branch and bound strategy with novel and aggressive pruning techniques. For instance, we use the core number of a vertex in combination with a good heuristic clique finder to efficiently remove the vast majority of the search space. In addition, we parallelize the exploration of the search tree. During the search, processes immediately communicate changes to upper and lower bounds on the size of maximum clique, which occasionally results in a super-linear speedup because vertices with large search spaces can be pruned by other processes. We apply the algorithm to two problems: to compute temporal strong components and to compress graphs.Comment: 11 page

    Listing k-cliques in Sparse Real-World Graphs

    Get PDF
    International audienceMotivated by recent studies in the data mining community which require to efficiently list all k-cliques, we revisit the iconic algorithm of Chiba and Nishizeki and develop the most efficient parallel algorithm for such a problem. Our theoretical analysis provides the best asymptotic upper bound on the running time of our algorithm for the case when the input graph is sparse. Our experimental evaluation on large real-world graphs shows that our parallel algorithm is faster than state-of-the-art algorithms, while boasting an excellent degree of parallelism. In particular, we are able to list all k-cliques (for any k) in graphs containing up to tens of millions of edges as well as all 10-cliques in graphs containing billions of edges, within a few minutes and a few hours respectively. Finally, we show how our algorithm can be employed as an effective subroutine for finding the k-clique core decomposition and an approximate k-clique densest subgraphs in very large real-world graphs

    Evolutionary Centrality and Maximal Cliques in Mobile Social Networks

    Full text link
    This paper introduces an evolutionary approach to enhance the process of finding central nodes in mobile networks. This can provide essential information and important applications in mobile and social networks. This evolutionary approach considers the dynamics of the network and takes into consideration the central nodes from previous time slots. We also study the applicability of maximal cliques algorithms in mobile social networks and how it can be used to find the central nodes based on the discovered maximal cliques. The experimental results are promising and show a significant enhancement in finding the central nodes
    corecore