951 research outputs found

    Planar graph coloring avoiding monochromatic subgraphs: trees and paths make things difficult

    Get PDF
    We consider the problem of coloring a planar graph with the minimum number of colors such that each color class avoids one or more forbidden graphs as subgraphs. We perform a detailed study of the computational complexity of this problem

    Injective colorings of graphs with low average degree

    Full text link
    Let \mad(G) denote the maximum average degree (over all subgraphs) of GG and let χi(G)\chi_i(G) denote the injective chromatic number of GG. We prove that if Δ≥4\Delta\geq 4 and \mad(G)<\frac{14}5, then χi(G)≤Δ+2\chi_i(G)\leq\Delta+2. When Δ=3\Delta=3, we show that \mad(G)<\frac{36}{13} implies χi(G)≤5\chi_i(G)\le 5. In contrast, we give a graph GG with Δ=3\Delta=3, \mad(G)=\frac{36}{13}, and χi(G)=6\chi_i(G)=6.Comment: 15 pages, 3 figure

    Linear Choosability of Sparse Graphs

    Get PDF
    We study the linear list chromatic number, denoted \lcl(G), of sparse graphs. The maximum average degree of a graph GG, denoted \mad(G), is the maximum of the average degrees of all subgraphs of GG. It is clear that any graph GG with maximum degree Δ(G)\Delta(G) satisfies \lcl(G)\ge \ceil{\Delta(G)/2}+1. In this paper, we prove the following results: (1) if \mad(G)<12/5 and Δ(G)≥3\Delta(G)\ge 3, then \lcl(G)=\ceil{\Delta(G)/2}+1, and we give an infinite family of examples to show that this result is best possible; (2) if \mad(G)<3 and Δ(G)≥9\Delta(G)\ge 9, then \lcl(G)\le\ceil{\Delta(G)/2}+2, and we give an infinite family of examples to show that the bound on \mad(G) cannot be increased in general; (3) if GG is planar and has girth at least 5, then \lcl(G)\le\ceil{\Delta(G)/2}+4.Comment: 12 pages, 2 figure

    List precoloring extension in planar graphs

    Full text link
    A celebrated result of Thomassen states that not only can every planar graph be colored properly with five colors, but no matter how arbitrary palettes of five colors are assigned to vertices, one can choose a color from the corresponding palette for each vertex so that the resulting coloring is proper. This result is referred to as 5-choosability of planar graphs. Albertson asked whether Thomassen's theorem can be extended by precoloring some vertices which are at a large enough distance apart in a graph. Here, among others, we answer the question in the case when the graph does not contain short cycles separating precolored vertices and when there is a "wide" Steiner tree containing all the precolored vertices.Comment: v2: 15 pages, 11 figres, corrected typos and new proof of Theorem 3(2
    • …
    corecore