42,693 research outputs found

    FAM13A and POM121C are candidate genes for fasting insulin: functional follow-up analysis of a genome-wide association study

    Get PDF
    Aims/hypothesis: By genome-wide association meta-analysis, 17 genetic loci associated with fasting serum insulin (FSI), a marker of systemic insulin resistance, have been identified. To define potential culprit genes in these loci, in a cross-sectional study we analysed white adipose tissue (WAT) expression of 120 genes in these loci in relation to systemic and adipose tissue variables, and functionally evaluated genes demonstrating genotype-specific expression in WAT (eQTLs). Methods: Abdominal subcutaneous adipose tissue biopsies were obtained from 114 women. Basal lipolytic activity was measured as glycerol release from adipose tissue explants. Adipocytes were isolated and insulin-stimulated incorporation of radiolabelled glucose into lipids was used to quantify adipocyte insulin sensitivity. Small interfering RNA-mediated knockout in human mesenchymal stem cells was used for functional evaluation of genes. Results: Adipose expression of 48 of the studied candidate genes associated significantly with FSI, whereas expression of 24, 17 and 2 genes, respectively, associated with adipocyte insulin sensitivity, lipolysis and/or WAT morphology (i.e. fat cell size relative to total body fat mass). Four genetic loci contained eQTLs. In one chromosome 4 locus (rs3822072), the FSI-increasing allele associated with lower FAM13A expression and FAM13A expression associated with a beneficial metabolic profile including decreased WAT lipolysis (regression coefficient, R = −0.50, p = 5.6 × 10−7). Knockdown of FAM13A increased lipolysis by ~1.5- fold and the expression of LIPE (encoding hormone-sensitive lipase, a rate-limiting enzyme in lipolysis). At the chromosome 7 locus (rs1167800), the FSI-increasing allele associated with lower POM121C expression. Consistent with an insulin-sensitising function, POM121C expression associated with systemic insulin sensitivity (R = −0.22, p = 2.0 × 10−2), adipocyte insulin sensitivity (R = 0.28, p = 3.4 × 10−3) and adipose hyperplasia (R = −0.29, p = 2.6 × 10−2). POM121C knockdown decreased expression of all adipocyte-specific markers by 25–50%, suggesting that POM121C is necessary for adipogenesis. Conclusions/interpretation: Gene expression and adipocyte functional studies support the notion that FAM13A and POM121C control adipocyte lipolysis and adipogenesis, respectively, and might thereby be involved in genetic control of systemic insulin sensitivity

    The pleiotropic transcriptional regulator NlpR contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci

    Get PDF
    The regulatory mechanisms involved in lipogenesis and triacylglycerol (TAG) accumulation are largely unknown in oleaginous rhodococci. In this study a regulatory protein (here called NlpR: Nitrogen lipid Regulator), which contributes to the modulation of nitrogen metabolism, lipogenesis and triacylglycerol accumulation in oleaginous rhodococci was identified. Under nitrogen deprivation conditions, in which TAG accumulation is stimulated, the nlpR gene was significantly upregulated, whereas a significant decrease of its expression and TAG accumulation occurred when cerulenin was added. The nlpR disruption negatively affected the nitrate/nitrite reduction as well as lipid biosynthesis under nitrogen-limiting conditions. In contrast, its overexpression increased TAG production during cultivation of cells in nitrogen-rich media. A putative ‘NlpR-binding motif’ upstream of several genes related to nitrogen and lipid metabolisms was found. The nlpR disruption in RHA1 strain led to a reduced transcription of genes involved in nitrate/nitrite assimilation, as well as in fatty acid and TAG biosynthesis. Purified NlpR was able to bind to narK, nirD, fasI, plsC and atf3 promoter regions. It was suggested that NlpR acts as a pleiotropic transcriptional regulator by activating of nitrate/nitrite assimilation genes and others genes involved in fatty acid and TAG biosynthesis, in response to nitrogen deprivation.Fil: Hernández, Martín Alejandro. Universidad Nacional de la Patagonia "san Juan Bosco". Instituto de Biociencias de la Patagonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biociencias de la Patagonia; ArgentinaFil: Lara, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Gago, Gabriela Marisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Gramajo, Hugo Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Alvarez, Hector Manuel. Universidad Nacional de la Patagonia "san Juan Bosco". Instituto de Biociencias de la Patagonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biociencias de la Patagonia; Argentin

    Glucocorticoid Receptor and Adipocyte Biology.

    Get PDF
    Glucocorticoids are steroid hormones that play a key role in metabolic adaptations during stress, such as fasting and starvation, in order to maintain plasma glucose levels. Excess and chronic glucocorticoid exposure, however, causes metabolic syndrome including insulin resistance, dyslipidemia, and hyperglycemia. Studies in animal models of metabolic disorders frequently demonstrate that suppressing glucocorticoid signaling improves insulin sensitivity and metabolic profiles. Glucocorticoids convey their signals through an intracellular glucocorticoid receptor (GR), which is a transcriptional regulator. The adipocyte is one cell type that contributes to whole body metabolic homeostasis under the influence of GR. Glucocorticoids' functions on adipose tissues are complex. Depending on various physiological or pathophysiological states as well as distinct fat depots, glucocorticoids can either increase or decrease lipid storage in adipose tissues. In rodents, glucocorticoids have been shown to reduce the thermogenic activity of brown adipocytes. However, in human acute glucocorticoid exposure, glucocorticoids act to promote thermogenesis. In this article, we will review the recent studies on the mechanisms underlying the complex metabolic functions of GR in adipocytes. These include studies of the metabolic outcomes of adipocyte specific GR knockout mice and identification of novel GR primary target genes that mediate glucocorticoid action in adipocytes

    Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism

    Get PDF
    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to26 the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk27 of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal28 hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats29 were hyperandrogenized with testosterone. At pubertal age, the prenatally30 hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and31 anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated32 hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid33 oxidation pathway, oxidant/antioxidant balance and pro-inflammatory status. We also34 evaluated the general metabolic status through growth rate curve, basal glucose and35 insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile.36 Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty37 oxidation pathways were altered. The PH groups also showed impaired38 oxidant/antioxidant balance, a decrease in the pro-inflammatory pathway (measured by39 prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance40 of circulating lipids and increased risk of metabolic syndrome. We conclude that41 prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of42 liver alterations, imbalance in lipid metabolism and increased risk of developing43 metabolic syndrome. The anovulatory phenotype showed more alterations in liver44 lipogenesis and a more impaired balance of insulin and glucose metabolism, being more45 susceptible to the development of steatosis.Fil: Abruzzese, Giselle Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Heber, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Ferreira, Silvana Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Velez, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Reynoso, Roxana María. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Endocrinología; ArgentinaFil: Pignataro, Omar Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Motta, Alicia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentin

    The metastasis inducer CCN1 (CYR61) activates the fatty acid synthase (FASN)-driven lipogenic phenotype in breast cancer cells

    Get PDF
    The angiogenic inducer CCN1 (Cysteine-rich 61, CYR61) is differentially activated in metastatic breast carcinomas. However, little is known about the precise mechanisms that underlie the pro-metastatic actions of CCN1. Here, we investigated the impact of CCN1 expression on fatty acid synthase (FASN), a metabolic oncogene thought to provide cancer cells with proliferative and survival advantages. Forced expression of CCN1 in MCF-7 cells robustly up-regulated FASN protein expression and also significantly increased FASN gene promoter activity 2- to 3-fold, whereas deletion of the sterol response element-binding protein (SREBP) binding site in the FASN promoter completely abrogated CCN1-driven transcriptional activation. Pharmacological blockade of MAPK or PI-3´K activation similarly prevented the ability of CCN1 to induce FASN gene activation. Pharmacological inhibition of FASN activity with the mycotoxin cerulenin or the small compound C75 reversed CCN1-induced acquisition of estrogen independence and resistance to hormone therapies such as tamoxifen and fulvestrant in anchorage-independent growth assays. This study uncovers FASNdependent endogenous lipogenesis as a new mechanism controlling the metastatic phenotype promoted by CCN1. Because estrogen independence and progression to a metastatic phenotype are hallmarks of therapeutic resistance and mortality in breast cancer, this previously unrecognized CCN1-driven lipogenic phenotype represents a novel metabolic target to clinically manage metastatic disease progression.Fil: Menendez, Javier A.. Instituto Catalán de Oncología; España. Institut d; EspañaFil: Vellón, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Espinoza, Ingrid. University Of Mississippi; Estados UnidosFil: Lupu, Ruth. Mayo Clinic Cancer Center; Estados Unido

    Effect of Wakame and Carob Pod Snacks on Non-Alcoholic Fatty Liver Disease

    Get PDF
    Snacks combining different functional ingredients could represent a useful therapeutic strategy against NAFLD. The present study aimed to analyze the effect of two snack formulations based on carob and wakame flour in the treatment for NAFLD in rats. For this purpose, metabolic syndrome was induced in 50 adult rats by a high-fat high-fructose diet over eight weeks. After this period, rats were fed either normal calorie diets supplemented or not with snack A (1/50 wakame/carob pod) and snack B (1/5 wakame/carob pod) for four additional weeks. After sacrifice, liver composition and serum parameters were analyzed. Different pathways of triacylglycerol metabolism in liver were studied including fatty acid oxidation, fatty acid synthesis, triglyceride assembly and release, fatty acid uptake and glucose uptake. Oxidative stress was also measured. Snack treatment, and mainly B snack, reduced liver triacylglycerol levels by increasing fat oxidation. Moreover, this snack reduced oxidative stress. Therefore, this snack formulation could represent an interesting tool useful for fatty liver treatment.This study has been supported by the National Institute for Agricultural and Food Research and Technology of Spain (INIA: RTA2014-0037-C02), Instituto de Salud Carlos III (CIBERobn) and Basque Government (IT-572-13)

    The adipokine sFRP4 induces insulin resistance and lipogenesis in the liver

    Get PDF
    Secreted frizzled-related protein (sFRP) 4 is an adipokine with increased expression in white adipose tissue from obese subjects with type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Yet, it is unknown whether sFRP4 action contributes to the development of these pathologies. Here, we determined whether sFRP4 expression in visceral fat associates with NAFLD and whether it directly interferes with insulin action and lipid and glucose metabolism in primary hepatocytes and myotubes. The association of sFRP4 with clinical measures was investigated in obese men with or without type 2 diabetes and with or without biopsy-proven NAFLD. To determine the impact of sFRP4 on metabolic parameters, primary human myotubes (hSkMC), or primary hepatocytes from metabolic healthy C57B16 and from systemic insulin-resistant mice, i.e. aP2-SREBP-1c, were used. Gene expression of sFRP4 in visceral fat from obese men associated with insulin sensitivity, triglycerides and NAFLD. In C57B16 hepatocytes, sFRP4 disturbed insulin action. Specifically, sFRP4 decreased the abundance of IRS1 and FoxO1 together with impaired insulin-mediated activation of Akt-signalling and glycogen synthesis and a reduced suppression of gluconeogenesis by insulin. Moreover, sFRP4 enhanced insulin-stimulated hepatic de novo lipogenesis (DNL). In hSkMC, sFRP4 induced glycolysis rather than inhibiting insulin signalling. Finally, in hepatocytes from aP2-SREBP-1c mice, sFRP4 potentiates existing insulin resistance. Collectively, we show that sFRP4 interferes with hepatocyte insulin action. Physiologically, sFRP4 promotes DNL in hepatocytes and glycolysis in myotubes. These sFRP4-mediated responses may result in a vicious cycle, in which enhanced rates of DNL and glycolysis aggravate hepatic lipid accumulation and insulin resistance
    corecore