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Abstract 24 

Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to 25 

the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk 26 

of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal 27 

hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats 28 

were hyperandrogenized with testosterone. At pubertal age, the prenatally 29 

hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and 30 

anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated 31 

hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid 32 

oxidation pathway, oxidant/antioxidant balance and pro-inflammatory status. We also 33 

evaluated the general metabolic status through growth rate curve, basal glucose and 34 

insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. 35 

Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty 36 

oxidation pathways were altered. The PH groups also showed impaired 37 

oxidant/antioxidant balance, a decrease in the pro-inflammatory pathway (measured by 38 

prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance 39 

of circulating lipids and increased risk of metabolic syndrome. We conclude that 40 

prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of 41 

liver alterations, imbalance in lipid metabolism and increased risk of developing 42 

metabolic syndrome. The anovulatory phenotype showed more alterations in liver 43 

lipogenesis and a more impaired balance of insulin and glucose metabolism, being more 44 

susceptible to the development of steatosis. 45 

 46 

 47 
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Introduction 48 

Polycystic ovary syndrome (PCOS) is one of the most common endocrine and 49 

metabolic disorders that affect women in their reproductive age (Franks 2003) and its 50 

clinical manifestations often emerge during puberty (Rosenfield 2007; Yan, et al. 2013).  51 

PCOS etiology remains controversial and current theories emphasize on genetic and 52 

intrauterine origins coupled with environmental factors such as the diet and altered 53 

lifestyle patterns (Franks 1995). It has been reported that prenatal androgen exposure is 54 

able to induce polycystic ovaries in rats (Demissie, et al. 2008; Foecking, et al. 2008), 55 

monkeys (Abbott, et al. 2010) and sheep (Manikkam, et al. 2006) and that fetal 56 

programming, mediated by prenatal hyperandrogenism, is related to hyperinsulinemia, 57 

dyslipidemia, insulin resistance (IR), cardiovascular disease and metabolic syndrome 58 

(Amalfi, et al. 2012; Demissie et al. 2008; Heber, et al. 2013). However, how fetal 59 

programming impacts on different tissues is unknown.   60 

The liver is involved in lipid synthesis, transportation and storage, as well as in glucose 61 

and insulin metabolism (Paschos and Paletas 2009), all key factors in PCOS 62 

pathogenesis (Baranova, et al. 2011; den Boer, et al. 2004; Paschos and Paletas 2009; 63 

Vassilatou 2014). One of the most frequent hepatic affections, related to metabolic 64 

abnormalities, is non-alcoholic fatty liver disease (NAFLD),which affects 20%-30% of 65 

the general population (Vassilatou 2014). NAFLD includes a clinicopathologic 66 

spectrum of conditions that encompass from simple steatosis (triglyceride (TG) 67 

accumulation in hepatocytes) to steatohepatitis with inflammation, fibrosis and even 68 

cirrhosis (Browning and Horton 2004). NAFLD pathogenesis remains unknown and 69 

there are many hypotheses about its origin (Lee, et al. 2014; Yasui, et al. 2012). 70 

Currently, the most accepted model proposes a multiple and parallel hits hypothesis. 71 
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Fatty acids and their metabolites are the lipotoxic agents involved in NAFLD 72 

development (Day and James 1998; Lin, et al. 2014), being the increase in oxidative 73 

stress one of the key factors in NAFLD pathogenesis (Lin et al. 2014; Madan, et al. 74 

2006). 75 

In physiological conditions, in the liver, there is an equilibrium between the uptake and 76 

exportation of fatty acids (which in turn can be esterified or to be oxidized) (Browning 77 

and Horton 2004; Kawano and Cohen 2013). However, when the balance between 78 

lipolysis and lipogenesis is altered, or fatty acid influx to the liver is increased, lipid 79 

droplets could accumulate in the liver, leading to steatosis and even NAFLD (den Boer 80 

et al. 2004; Kawano and Cohen 2013). 81 

A common feature of NAFLD and PCOS is IR (Gambarin-Gelwan, et al. 2007; 82 

Schwimmer, et al. 2005). However, it remains controversial whether IR is the key cause 83 

in the development of NAFLD in women with PCOS (Gambarin-Gelwan et al. 2007; 84 

Liang and Ward 2006). Since PCOS patients with hyperandrogenic phenotypes have a 85 

higher prevalence of developing NAFLD, it has been suggested that androgens could 86 

contribute to the development of the pathology (Vassilatou 2014; Vassilatou, et al. 87 

2010). We have previously demonstrated that the levels of androgen administered in 88 

pregnant rats are directly related to the PCOS-like phenotype displayed in the female 89 

offspring during the pubertal age (Amalfi et al. 2012) and that the fetal programming 90 

generated by androgens leads to metabolic alterations, particularly in lipid metabolism, 91 

which worsen through life (Heber et al. 2013).  92 

Based on the above, the aim of this study was to evaluate the effect of prenatal 93 

hyperandrogenism on the liver function and lipid metabolism.  94 

 95 
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Materials and methods 96 

 Animals and treatments 97 

Virgin female rats of the Sprague Dawley strain were mated with fertile males of the 98 

same strain. Three females and one male were housed in each cage under controlled 99 

conditions of light (12 h light, 12 h dark) and temperature (23-25 ºC). Animals received 100 

food and water ad libitum. Day 1 of pregnancy was defined as the morning on which 101 

spermatozoa were observed in the vaginal fluid. As previously described (Demissie et 102 

al. 2008), pregnant rats (N=15) received subcutaneous injections of 1 mg of free 103 

testosterone (T-1500; Sigma, St. Louis, MO, USA) dissolved in 100 µl sesame oil from 104 

day 16 to day 19 of pregnancy. This hormonal paradigm mimics the fetal testosterone 105 

surge that is observed in male rats when the reproductive axis in the fetus is established. 106 

Another group (N=15) received only 100 µl of sesame oil. The dose was selected based 107 

on previous findings of our lab (data not published) and other studies which have shown 108 

that this dose leads to ovulatory and anovulatory phenotypes and that higher doses lead 109 

only to anovulatory phenotypes during the adult life and even to vaginal atresia (Wolf, 110 

et al. 2002). Under the conditions of our animal facilities, spontaneous term labor 111 

occurs on day 22 of gestation. Female offspring were separated from males at 21 days 112 

of age and sacrificed during pubertal age at 60 days of age. Those from 113 

hyperandrogenized mothers were the prenatally hyperandrogenized (PH) group and 114 

those from mothers injected with sesame oil were the control (Ctl) group. Animals were 115 

allowed free access to Purina rat chow (Cooperación SRL, Argentina) and water. All the 116 

procedures involving animals were conducted in accordance with the Animal Care and 117 

Use Committee of Consejo Nacional de Investigaciones Científicas y Tecnicas 118 

(CONICET) 1996, Argentina, and the study was approved by the Ethics Committee of 119 
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the School of Medicine of University of Buenos Aires. To establish the phenotype 120 

diversity, the above procedures were independently repeated three times.   121 

At 60 days of age, 75 female offspring from each group were anesthetized with carbon 122 

dioxide and killed by decapitation. Trunk blood was collected and serum was separated 123 

and kept at -80°C for further studies. Ovaries and liver were extracted and conserved at 124 

-80°C or fixed in 4% (v/v) formaldehyde for histological studies. All animals were 125 

randomly assigned for each assay. 126 

Characterization of the prenatally hyperandrogenized murine model  127 

 Serum testosterone was quantified from 15 offspring from each group by 128 

radioimmunoassay (RIA) as previously described (Amalfi et al. 2012). Serum estradiol 129 

levels were quantified by Cobase immunoassay analyzers using an Electro 130 

Chemiluminescence Immuno Assay (ECLIA) following the manufacturer’s instructions. 131 

The intra- and interassay coefficients of variation (CVs) were 7.3% and 13.2% 132 

respectively for testosterone and 3.93% and 7.08% respectively for estradiol.  133 

The estrous cycle was determined by vaginal smears taken daily from 45 to 60 days of 134 

age in all the animals. 135 

Regular ovulatory animals were those that showed smears displaying the four stages of 136 

the estrous cycle in the following order: proestrus, estrus, metaestrus, diestrus, with 137 

cycles of 4 to 6 days. Irregular ovulatory animals were both those that showed some 138 

smears displaying an estrous stage but further smears not following the progress of the 139 

cycle as described above, and those whose cycles lasted 7 days or more (PHov). 140 

Anovulatory animals were whose smears showed metaestrus, diestrus, or a combination 141 

of both for four consecutive days, and were thus considered to be non-cycling (PHanov) 142 

(Karim, et al. 2003). 143 
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To evaluate ovarian histology, 10 ovaries from each group were removed and 144 

immediately fixed in 4% (v/v) formaldehyde and analyzed by two different 145 

investigators. Ovaries were embedded in paraffin wax and consecutively cut. To prevent 146 

counting the same follicle twice, 6-µm step sections were mounted at 50-µm intervals 147 

onto microscope slides. Then, slides were stained with hematoxylin and eosin 148 

(Woodruff, et al. 1990). 149 

Hepatic enzymes  150 

Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and 151 

gamma-glutamyl transferase (GGT) were quantified by colorimetric enzymatic methods 152 

(Wiener Lab, Argentina) following the manufacturer´s instructions. The chromophoric 153 

products were measured at 340 nm for ALT and AST and at 405 nm for GGT, all at 154 

25°C. The intra- and interassay Cvs were 3.02% and 5.63% for ALT, 4.4% and 4.9% 155 

for AST, and 1.62% and 5% for GGT.  156 

Liver lipid and TG content 157 

Fragments of hepatic tissue randomly selected from 15 female offspring from each 158 

group were fixed in formaldehyde 4% (v/v), cut in cryostat and stained with SUDAN IV 159 

to visualize lipid droplets using hematoxylin as contrast stain. The intestine of tadpole 160 

was used as a positive control of the SUDAN IV technique (Regueira, et al. 2016).  To 161 

evaluate the TG content in the liver, 15 frozen samples of  each  group were saponified 162 

and TG content was quantified by comparing to a glycerol standard curve by a 163 

commercial kit (Wiener Lab, Argentina), as previously described (Chow, et al. 2011).  164 

Hepatic lipid metabolism 165 

The mRNA expression of Acetyl-CoA carboxylase (ACC) 1 and2 (Acaca and Acacb, 166 

respectively), Fatty acid Synthase (Fas), stearoyl-CoA desaturase (Scd1), Sterol 167 
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regulatory element-binding protein1 (Srebp1), carbohydrate response element binding 168 

protein (Chrebp), Peroxisome proliferator-activated receptor alpha and gamma 169 

(Pparalpha and Ppargamma) and PPARgamma co-activator 1alpha (Pgc1a) was 170 

evaluated by Real-Time PCR analysis in 15 different samples from each group. Total 171 

mRNA from hepatic tissue was extracted using RNAzol RT (MRC gene, Molecular 172 

Research Center, Cincinnati, OH, USA) following the manufacturer’s instructions. 173 

cDNA was synthesized from 500 ng mRNA by using random  primers. Real-Time PCR 174 

analysis was performed from this cDNA by means of the real mix B124-100 175 

(Biodynamics SRL, USA). The amplified products were quantified by fluorescence 176 

using the Rotor Gene 6000 Corbett and mRNA abundance was normalized to the 60s 177 

Ribosomal protein L32 (L32) amount. L32 was validated as a reference gene because 178 

the variance between treatments did not differ. Results are expressed as arbitrary units. 179 

The primers are shown in Table 1. 180 

Liver oxidant/antioxidant balance  181 

The oxidant–antioxidant balance in liver tissue was evaluated as the lipid peroxidation 182 

index and the content of the antioxidant glutathione (GSH) in 15 samples of each group. 183 

The amount of malondialdehyde formed from the breakdown of polyunsaturated fatty 184 

acids is taken as an index of the peroxidation reaction. The method used in this study 185 

was as that previously described (Amalfi et al. 2012; Heber et al. 2013). The reduced 186 

form of GSH, which comprises the bulk of cellular protein sulfhydryl groups, was 187 

quantified as previously described (Amalfi et al. 2012; Heber et al. 2013).  188 

Liver inflammatory status  189 

 The inflammatory status in liver tissue was measured by evaluating the levels of 190 

Prostaglandin E (PGE) and cyclooxygenase-2 (COX2), the limiting enzyme of its 191 
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synthesis. PGE was determined by RIA as previously reported (Motta, et al. 1999). 192 

COX2 was measured by the Western blotting technique, using 200 mg of liver tissue  193 

from 10 independent samples per group, as previously described (Amalfi et al. 2012).  194 

General metabolism imbalance 195 

The body weight of all the animals of all the groups was determined at 21, 28, 38, 45 196 

and 60 days of age. 197 

Basal insulin levels were measured by an ELISA kit, following the manufacturer’s 198 

instructions (Abcam Insulin Human ELISA Kit) and basal glucose levels were 199 

quantified by colorimetric enzymatic methods (Wiener Lab, Argentina) (N=10 per 200 

group). The intra- and interassay Cvs were 10% and 12% respectively for insulin and 201 

1.39% and 1.92% respectively for glucose.  202 

The glucose tolerance test (IPGTT) was performed in separate groups of ten female 203 

offspring from each group, as previously described (Amalfi et al. 2012; Demissie et al. 204 

2008). The homeostatic model assessment for IR (HOMA-IR) was determined (Yan et 205 

al. 2013). The circulating lipid profile was evaluated as previously described and the 206 

TG/HDL cholesterol ratio was taken as a marker of metabolic syndrome risk (Heber et 207 

al. 2013). 208 

Statistical analysis 209 

Statistical analyses were carried out using the Instant program (GraphPad software, San 210 

Diego, CA, USA). ANOVA with post-hoc Tukey test was used to compare the three 211 

treatments. Statistical significance was considered as p<0.05.  212 

 213 

 214 

 215 
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Results  216 

Characterization of the prenatally hyperandrogenized murine model  217 

The PHov and PHanov groups showed higher serum testosterone levels than the control 218 

group, but only PHanov animals displayed lower estradiol levels than the control (Fig. 219 

1A and 1B, p<0.01). Figure 1C shows a representative ovarian tissue section from the 220 

control group. The general appearance of the tissue resembled normal histology: a 221 

central medulla consisting mainly of fibromuscular stroma and corpora lutea and antral 222 

follicles located in the peripheral cortex. Histological examination of ovaries from the 223 

PHov and PHanov groups (Fig. 1C and 1D) revealed the presence of corpora lutea, 224 

cysts and an excess of small antral follicles. In addition, in PHanov animals, the ovary 225 

was disorganized as compared to the control group and small follicles could be seen 226 

invading the central medulla. The detail in figure 1E shows that cysts present a layer of 227 

theca cells and a thin compacted formation of granulosa cells.  228 

Regarding the estrous cycle, in the three independent repetitions of the animal 229 

procedure, always 100% of the control rats showed a regular estrous cycle. Within the 230 

PH group, 43-51% showed irregular estrous cycles and were considered as PHov, 231 

whereas 27-39% presented anovulatory cycles and were considered PHanov. 232 

Testosterone did not affect the age of vaginal opening. 233 

Prenatal hyperandrogenism and hepatic alterations 234 

ALT levels were increased in the PHov group (Fig. 2A, p<0.01). Neither AST or GGT 235 

levels were affected in the PHov or PHanov groups as compared with the control group 236 

(Fig. 2B and 2C respectively, p>0.05).   237 

As compared with the positive control of the SUDAN IV technique (Fig. 2D, arrows), 238 

neither the control group (Fig. 2E) nor the PHov or PHanov phenotypes (Fig. 2F and 239 
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2G) showed hepatic lipid droplets. In addition, no differences were found in the hepatic 240 

TG content between groups (Fig. 2H, p>0.05).  241 

Regarding the transcription factors that are mediators of lipogenesis, we found that 242 

Ppargamma and Srebp mRNA levels were higher in both PH groups than in the control 243 

group (Fig. 3A and 3B, p<0.05), whereas Chrebp levels were only altered in the 244 

PHanov animals (Fig. 3C, p<0.05). Regarding the enzymes involved in lipogenesis, we 245 

found that the mRNA levels of the genes encoding both isoforms of Acetyl-CoA 246 

carboxylase (Acaca and Acacb) were decreased in both PH groups (Fig. 3 D and 3E, 247 

p<0.05). Fas mRNA levels were increased in the PH groups (Fig. 3F, p<0.05), whereas 248 

Scd1 mRNA levels were only impaired in PHanov animals (Fig. 3G, p<0.05). 249 

Regarding fatty acid oxidation pathways, we found that Pparalpha mRNA levels 250 

showed no differences between the control and PHov groups but were decreased in 251 

PHanov (Fig. 3H, p<0.01), and that Pgc1a levels were lower in both PH animals than in 252 

controls (Fig. 3I, p<0.01).  253 

L32 was validated as a reference gene, obtaining no statistical difference in the stability 254 

between treatments measured by the Ct (threshold cycle) (control=21.76 + 0.24; PHov= 255 

21.36 + 0.30; PHanov= 21.70 + 0.34; p=0.67). 256 

The lipid peroxidation index was higher in the PH groups than in the control (Fig. 4A, 257 

p<0.05). GSH levels were altered in both PH groups as compared to the control. GSH 258 

levels were increased in the PHov groups and decreased in the PHanov group (Fig. 4B, 259 

p<0.01).  260 

Both the levels of PGE and the protein expression of COX2 were lower in the PH 261 

groups than in the control group. In addition, the PGE levels were lower in the PHanov 262 

group than in the PHov animals (Fig. 4C and 4D, p<0.01).  263 
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Prenatal hyperandrogenism and metabolic derangements  264 

Prenatal hyperandrogenism did not affect the body weight from prepubertal to pubertal 265 

age (Fig. 5A, p=0.41). Insulin levels were increased in both PH groups as respect to 266 

controls (Fig. 5B, p<0.05), and basal glucose levels were impaired in the PHanov group 267 

(Fig. 5C, p<0.05). The IPGTT showed that prenatal hyperandrogenism induced 268 

increased levels of circulating glucose (Fig. 5D), represented by the area under the 269 

curve of glucose concentration (control = 14873.0 + 119.7; PHov = 21045.0 + 164.0; 270 

PHanov= 2090.0 + 156.6 in arbitrary units, control vs. PHov p<0.01; control vs. 271 

PHanov p<0.05; PHov vs. PHanov p>0.05). The HOMA-IR index was increased in the 272 

PHanov group as compared to controls (Fig. 5E, p<0.05).  273 

Both PH groups showed an altered circulating lipid profile, displaying higher levels of 274 

circulating low-density lipoproein cholesterol (LDL) (Fig. 6A, p<0.05) and TG than the 275 

control group (Fig. 6B, p<0.01). No significant differences were found in the levels of 276 

total cholesterol or high-density lipoprotein (HDL) cholesterol (Fig. 6C and 6D, 277 

p>0.05). The TG/HDL cholesterol ratio, as a marker of metabolic syndrome risk was 278 

higher in both PH groups than in the control group (control=1.13 + 0.34; PHov= 2.42 + 279 

0.24; PHanov= 2.65 + 0.39, p<0.05; PHov vs. control and PHanov vs. control, p>0.05 280 

PHov vs. PHanov).  281 

 282 

Discussion 283 

The developmental origins of PCOS are controversial. Some authors have reported that 284 

an altered in utero environment could be responsible for metabolic diseases and PCOS 285 

features development in different species (Abbott, et al. 2005; Demissie et al. 2008; 286 

Hogg, et al. 2011), whereas others propose PCOS as a multiplicity of etiologies and not 287 
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a simple mechanism and emphasize genotype features (Franks and Berga 2012; 288 

Gluckman and Hanson 2004). It is known that both the embryo development stages and 289 

early postnatal life period are crucial to condition adult health life. Thus, currently used 290 

PCOS animal models focus on these critical development time windows (Abbott et al. 291 

2010; Amalfi et al. 2012; Demissie et al. 2008; Jang, et al. 2015; Manikkam et al. 292 

2006). Furthermore, the metabolic and endocrine alterations found in the prenatal 293 

models lead to several long-term effects, thus highlighting the importance of the in 294 

utero environment.  295 

In the present study, we reproduced a murine model wich displayed PCOS features 296 

leading to two phenotypes: both with hyperandrogenism and ovarian alterations, such as 297 

an increase in the number of preantral follicles and the formation of cysts. Nearly 50% 298 

of the cases of the PH group presented irregular ovulatory estrous cycles whereas 299 

around 40% of the cases in PH group presented the anovulatory phenotype. 300 

Ovaries from PCOS women are known to contain an increased number of small follicles 301 

that have and excessive early growth but with follicular arrest, thus preventing the 302 

selection and further maturation of a dominant follicle. These data are in accordance 303 

with our results showing that androgens play a role in follicle recruitment (Jonard and 304 

Dewailly 2004). 305 

We found that PH rats showed incipient liver damage. These data are in agreement with 306 

previous reports that suggest that the intrauterine environment plays an important role in 307 

the development of both NAFLD and PCOS during postnatal life (Baranova, et al. 308 

2013; Brumbaugh and Friedman 2014).  309 

Contrary to other reports (Demissie et al. 2008; Hogg et al. 2011), we found no lipid 310 

accumulation in the liver. This difference could be due to the higher doses of androgens 311 
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used in those reports and is in agreement with our previous findings where higher doses 312 

of androgens induced a more severe PCOS-like phenotype as well as worse endocrine 313 

and metabolic disturbances (Amalfi et al. 2012). To deepen the study of lipid 314 

metabolism in the liver, we evaluated the status of the de novo lipogenesis pathway and 315 

β-fatty acid oxidation mediators (Figure 7). To assess the lipogenic pathway, we 316 

evaluated the role of three transcription factors involved in the regulation of de novo 317 

lipogenesis. Two of them, Srebp and Chrebp, are regulated by insulin and glucose 318 

levels, respectively, and both regulate the expression of genes encoding lipogenic 319 

enzymes (Browning and Horton 2004; Strable and Ntambi 2010). Our results showed 320 

that the PH groups presented high levels of Srebp, consistent with the high levels of 321 

serum insulin found in PH animals. Moreover, Chrebp was impaired in the PHanov 322 

group, showing a correlation with basal glucose levels in those animals. These data are 323 

in accordance with that described by other authors showing that in the hyperinsulinemic 324 

and even more in the IR states, SREBP1-c transcription is stimulated and could lead to 325 

de novo fatty acid synthesis (Browning and Horton 2004; Strable and Ntambi 2010). 326 

The third transcription factor studied, also involved in the regulation of lipogenesis, was 327 

PPARgamma. It has been shown that in animal models of IR, PPARgamma levels are 328 

increased, promoting lipid storage (Ables 2012; Kawano and Cohen 2013). In 329 

agreement with these data, our results showed increased Pppargamma levels in the PH 330 

groups, thus highlighting the relationship between liver lipid metabolism and glucose 331 

and insulin metabolism. Although only the PHanov phenotype presented signs of IR, by 332 

the HOMA-IR index, both PH groups showed increased insulin levels and decreased 333 

glucose tolerance by the IPGGT test.  334 
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In addition to an altered expression of the transcription factors modulating lipogenic 335 

genes, we found alterations in the mRNA levels of the genes encoding FAS and SCD1, 336 

both enzymes involved in lipogenesis. Both PH groups showed increased levels of Fas 337 

but only the PHanov group showed altered levels of Scd1, the enzyme leading to 338 

monounsaturated fatty acids. Thus, although the lipogenic pathway was altered in both 339 

PH groups, the PHanov showed a deeper dysregulation of the lipogenesis system.   340 

The first limiting factor in lipogenesis is the synthesis of Malonyl-CoA, which is 341 

synthesized by ACC, which is present in both isoforms encoded by the Acaca and 342 

Acacb genes. Our results surprisingly showed that both mRNA levels were decreased in 343 

the PH groups, independently of the increased levels of Srebp, Chrebp and Ppargamma. 344 

Malonyl-CoA is an indirect inhibitor of fatty acid oxidation (Browning and Horton 345 

2004) and it has been described that when one of the ACC isoforms is reduced, fatty 346 

acid oxidation results increased. These findings suggest that the reduction of Acaca and 347 

Acacb expression could be due to the effect of other regulatory mechanisms 348 

(independently of Ppargamma, Srebp and Chrebp action), which may be preventing 349 

lipid accumulation by decreasing Malonyl-CoA synthesis (Savage, et al. 2006; Strable 350 

and Ntambi 2010), thus  favoring fatty acid oxidation.    351 

Our results are in accordance with other studies (Mao, et al. 2006; Strable and Ntambi 352 

2010) that show that Acaca levels are independent of the expression of the genes 353 

involved in fatty acid synthesis. In fact, the knock-out of Acaca shows increased levels 354 

of several genes that encode proteins involved in lipogenesis but without hepatic lipid 355 

accumulation (Mao, et al. 2006; Strable and Ntambi 2010). These data demonstrate that 356 

Acaca could be playing a protective role in the development of hepatic steatosis.     357 
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In addition to the alterations found in the lipogenesis pathways, we found derangements 358 

in fatty acid oxidation (Fig. 7). By having opposite functions, Pparalpha and 359 

Ppargamma regulate fat metabolism and while Ppargamma promotes lipid storage, 360 

Pparalpha promotes lipid utilization (Ables 2012; Kawano and Cohen 2013; Souza-361 

Mello 2015). In the present study, prenatal hyperandrogenization decreased Pparalpha 362 

levels in the liver of PHanov animals, suggesting that this group could be more sensitive 363 

to hepatic steatosis. We also found that the levels of the PPARs coactivator, Pgc1a, a 364 

key regulator of lipid metabolism, were decreased in both PH groups as compared with 365 

the control group. In fact, PGC1a not only acts as a regulator of PPARs but also 366 

promotes oxidation of fatty acids by binding to specific transcription factors, modulates 367 

mitochondrial functions, and controls glucose homeostasis (Fernandez-Marcos and 368 

Auwerx 2011; Liang and Ward 2006). Taken together, our data suggest that 369 

dysregulation of lipogenesis and fatty acid oxidation could lead in the long-term to the 370 

development of hepatic damage, deepened by decreased insulin sensitivity.  371 

Oxidative stress and the pro-inflammatory process are also involved in the pathogenesis 372 

of hepatic damage. Oxidative stress is involved in the regulation of very low-density 373 

lipoprotein (VLDL) production and its excretion by the liver (Pan, et al. 2004).  374 

Moreover, the addition of GSH to rat hepatoma cells reverses steatosis and decreases 375 

lipid peroxidation levels (Pan et al. 2004). In the liver, GSH levels correlate with high 376 

levels of circulating LDL cholesterol, which reinforces the association between the 377 

oxidative balance and lipid metabolism (Lin et al. 2014). In agreement with these 378 

findings, here we found that GSH compensated the damage caused by lipid peroxidation 379 

in the PHov group but not in the PHanov group. We suggest that in the PHov group 380 

GSH could be modulating VLDL secretion from the liver to the circulation, as 381 
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manifested by the increased levels of serum LDL observed, and thus preventing the 382 

accumulation of VLDL, as evidenced by the lack of accumulation of lipid droplets. 383 

As mentioned before, the pro-inflammatory process is involved in the development of 384 

NAFLD (Day and James 1998) and prostaglandins and COX2 play a role in lipid 385 

metabolism and lipid accumulation in the liver (Hsieh, et al. 2009; Ii, et al. 2009; Yu, et 386 

al. 2006). Increased levels of PGE correlate with TG accumulation in the liver (Henkel, 387 

et al. 2012; Hsieh et al. 2009; Ii et al. 2009). In agreement with these data, we found that 388 

decreased levels of PGE and COX2 in the PH groups evidenced an alteration in the pro-389 

inflammatory mediators that could be preventing liver fat accumulation. In fact, the 390 

decrease in the inflammatory pathway in the PH groups correlated with a lack of 391 

increase in TG content. These results contribute to the explanation of the absence of 392 

lipid droplets in the PHanov group. Although the liver PPAR system was altered and 393 

lipogenesis was favored, there was a systemic manifestation of these consequences seen 394 

by an altered circulating lipid profile. Thus, a depletion of the pro-inflammatory 395 

mediators could be acting as a compensatory system.   396 

Hepatic transaminases have been described as markers of liver function and damage 397 

(Vassilatou 2014). Although ALT is one of the hepatic enzymes most used as a marker 398 

to detect hepatic injury, several studies have shown other causes for its increase, 399 

including growth spurs and looming diabetes (Burgert, et al. 2006; Vassilatou 2014). 400 

Despite these findings, it remains controversial whether ALT is a good marker for liver 401 

function because some individuals have NAFLD but normal ALT levels and vice versa 402 

(Kim, et al. 2008). It has been recommended that increased levels of these enzymes in 403 

blood may only be used to detect the inflammation that occurs on the liver due to injury 404 

or damage. Unexpectedly, we found increased levels of ALT only in PHov animals. 405 
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Thus, as the PHanov group presented a great depletion of the pro-inflammatory status, 406 

then ALT serum levels would not be affected in these animals (Burgert et al. 2006; 407 

Kerner, et al. 2005; Yamada, et al. 2006).  408 

It should be pointed out that the incidence of NAFLD and liver fat accumulation are 409 

associated with increasing age and body weight (Michaliszyn, et al. 2013; Park, et al. 410 

2014). Here, we found no alterations in body weight or fatty liver presence related to the 411 

decreased liver inflammation. However, studies are being carried out in adult rats, as we 412 

found that derangements in the metabolic pathway of lipogenesis could worsen through 413 

life (Heber et al. 2013).  414 

Women with the more severe PCOS phenotype show increased prevalence of NAFLD 415 

(Jones, et al. 2012). Here we found that the PHanov group was the most affected, 416 

displaying decreased expression of Pgc1a and Pparalpha and over-expression of 417 

Ppargamma, Srebp, Chrebp, thus being more susceptible to presenting signs of hepatic 418 

steatosis and damage in the long-term (Browning and Horton 2004; Estall, et al. 2009). 419 

Our data are in accordance to the multiple hits hypothesis (Day and James 1998; Lin et 420 

al. 2014) to explain the origins of NAFLD. This involves IR, fatty acid signaling 421 

impairment, oxidative stress and inflammation as contributing factors to NAFLD 422 

development. As we found no lipid accumulation but alterations in the processes 423 

described, steatosis may be a consequence of hepatic signaling derangements and 424 

systemic metabolic detriment. We do not discard that the hepatic alterations found could 425 

be due to an increased testosterone/estradiol ratio, worsened in the PHanov group.  426 

In summary, our data show for the first time that both ovulatory and anovulatory 427 

phenotypes that mimics PCOS features present, at pubertal age, signs of incipient liver 428 

injury and an imbalance of the fatty acid metabolism mediated by the PPAR system, 429 
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SREBP and CHREBP as well as an imbalance of the lipogenic enzymes but without 430 

development of NAFLD. These derangements are related to systemic effects, 431 

dyslipidemia and decreased glucose tolerance.  432 
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Legends of figures 

Figure 1. Prenatally hyperandrogenized murine model. Prenatal hyperandrogenism 

in female offspring of control (Ctl) and prenatally hyperandrogenized (PH) groups. (A) 

Serum testosterone levels. Each column represents the mean + SEM from fifteen 

different animals per group, a vs b p<0.01 by ANOVA test. (B) Serum estradiol levels. 

Each column represents the mean + SEM from fifteen different animals per group, a vs 

b p<0.05 by ANOVA test. (C) A representative ovarian tissue section from the Ctl 

group (40X). (D) A representative ovarian tissue section from the PHov group (40X). 

(E) A representative ovarian tissue section from the PHanov group (40X). (F) Detail of 

a representative ovarian cyst from the PH groups (100X). Corpus luteum (CL), antral 

follicle (AF), cyst (Cy), granulosa cells (GC), theca cells (ThC) and preantral follicles 

(PaF).  

Figure 2. Effects of prenatal hyperandrogenism on liver transaminase levels and 

lipid content. (A) Serum levels of ALT and (B) AST. (C) GGT. Each column 

represents the mean + SEM of control (Ctl) and prenatally hyperandrogenized (PH) 

groups; a vs b p<0.05, by ANOVA test. Liver lipid content was quantified by SUDAN 

IV staining. (D) The cytoplasmic lipid droplets are shown in red, as shown in the 

positive control of the technique (arrows).  Each photo shows the detail (100X) of a 

representative staining of the Ctl group (E) and PHov (F) and PHanov groups (G). 

There was no evidence of cytoplasmic lipid accumulation.  (H) TG content in the liver. 

No significant differences were found between the Ctl and PH groups (p>0.05, by 

ANOVA test). 

Figure 3. Effects of prenatal hyperandrogenism on liver lipid metabolism 
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 The graphs correspond to the mRNA abundance of the gene of interest relative to L32 

mRNA levels of control (Ctl) and prenatally hyperandrogenized (PH) groups. L32 was 

validated as a reference gene using Cts (cycle threshold) (Control=21.76 + 0.24; PHov= 

21.36 + 0.30; PHanov= 21.70 + 0.34; p=0.67) (A) Gene expression of Ppargamma (a vs 

b p<0.01), (B) Srebp (a vs b p<0.05) (C) Chrebp (a vs b p<0.05), (D) Acaca (a vs b 

p<0.01), (E) Acacb (a vs b p<0.01), (F) Fas (a vs b p<0.01), (G) Scd1 (a vs b p<0.05), 

(H) Pparalpha (a vs b p<0.01), and (I) Pgc1a (a vs b p<0.01). Each column represents 

the mean + SEM. Statistical analyses were made by ANOVA test. 

Figure 4. Effects of prenatal hyperandrogenism on liver oxidant/antioxidant 

balance and proinflammatory status. The oxidant–antioxidant balance in liver tissue 

was evaluated by measuring the lipid peroxidation index (A) and the content of the 

antioxidant glutathione (B). Each column represents the mean + SEM. Different letters 

mean statistical significant differences (a≠b≠c, p<0.05 in both cases, by ANOVA test). 

(C) Liver PGE content was measured to evaluate the pro-inflammatory status (a≠b≠c, 

p<0.01 by ANOVA). (D) To evaluate whether PGE levels were influenced by the 

limiting enzyme of its synthesis, COX2 was measured, a vs b p<0.05, by ANOVA test. 

Each column represents the mean + SEM.  

Figure 5. Prenatal hyperandrogenism and metabolic derangements. Metabolic  

features evaluated in female offspring of control (Ctl) and prenatally hyperandrogenized 

(PH) groups. (A) The curve represents the mean growth rates of the Ctl and PH groups. 

Differences between growth rates were not significant (p>0.05, by ANOVA test). (B) 

Basal insulin levels, a vs b p<0.05. (C) Basal glucose levels a vs b p<0.05. (D) Blood 

samples followed by intraperitoneal injection of 2 g dextrose/kg body weight were 
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collected at 0, 30, 60, 90 and 120 minutes post-injection for IPGTT. (E) HOMA-IR 

index a vs b p<0.05. Values are mean + SEM by ANOVA test.  

Figure 6. Effect of prenatal hyperandrogenism on the circulating lipid profile. (A) 

Serum levels of low-density lipoprotein cholesterol (LDL-cholesterol), (B) 

triglycerides, (C) total cholesterol and (D) high-density lipoprotein cholesterol (HDL-

cholesterol). Each column represents the mean + SEM of control (Ctl) and prenatally 

hyperandrogenized (PH) groups; a vs b p<0.01 panel A; p< 0.05 panel B. Data were 

analyzed by ANOVA test.   

Figure 7. Mediators of hepatic lipogenesis and β-oxidation. SREBP, ChREBP and 

PPARgamma are transcription factors involved in the regulation of hepatic lipogenesis. 

Insulin and glucose modulate SREBP and ChREBP, respectively. These transcription 

factors and PPARgamma positively regulate de novo lipogenesis by modulating the 

expression of the enzymes involved in this pathway. On the other hand, PPARalpha and 

PGC1a are positively regulators of genes involved in fatty acid oxidation. A balance 

between these processes is needed to avoid hepatic liver accumulation leading to 

steatosis. Insulin resistance is associated with an increase in lipogenesis due to an up-

regulation of ChREBP, SREBP-1c and PPARgamma and a decrease in fatty acid 

oxidation due to a negative regulation on PPARalpha.  
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Primers used in real-time PCR 

Gene Primers sequences  Temperature 

of melting(°C) 

Ppargamma F 

Ppargamma R 

5'-TTTTCAAGGGTGCCAGTTTC-3' 

5'-GAGGCCAGCATGGTGTAGAT-3' 

60 

Srebp F  

Srebp R  

5'- TAACCTGGCTGAGTGTGCAG -3' 

5'- ATCCACGAAGAAACGGTGAC -3' 

60 

Chrebp F 

Chrebp R 

5'- GGTTGTCCCCAAAGCAGAGA -3' 

5'- TTGTTGTCTACACGACCCCG -3' 

62 

Acaca F 

Acaca R 

5'-CCAGACCCTTTCTTCAGCAG-3' 

5'-AGGACCGATGTGATGTTGCT-3' 

62 

AcacbF  

Acacb R  

5'-CAAAGCCTCTGAAGGTGGAG-3' 

5'- CTCGTCCAAACAGGGACACT -3' 

62 

Fas F  

Fas R  

5'-TCGAGACACATCGTTTGAGC-3' 

5'-CCCAGAGGGTGGTTGTTAGA-3' 

62 

Scd1F  

Scd1 R  

5'-GCTTCCAGATCCTCCCTACC-3' 

5'-CAACAACCAACCCTCTCGTT-3' 

62 

Pparalpha F 

Pparalpha R 

5'-TCACACGATGCAATCCGTTT-3' 

5'-GGCCTTGACCTTGTTCATGT-3' 

60 

Pgc1a F  

Pgc1a R  

5'-AATGCAGCGGTCTTAGCACT-3' 

5'-GTGTGAGGAGGGTCATCGTT-3' 

60 

L32 F  

L32 R  

5'-TGGTCCACAATGTCAAGG-3'  

5'-CAAAACAGGCACACAAGC-3' 

58 

 

Table 1 :List of primers used in real-time PCR. (F) forward sequence, (R) reverse sequence. 
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Figure 1. Prenatally hyperandrogenized murine model. Prenatal hyperandrogenism in female offspring of 
control (Ctl) and prenatally hyperandrogenized (PH) groups. (A) Serum testosterone levels. Each column 
represents the mean + SEM from fifteen different animals per group, a vs b p<0.01 by ANOVA test. (B) 

Serum estradiol levels. Each column represents the mean + SEM from fifteen different animals per group, a 
vs b p<0.05 by ANOVA test. (C) A representative ovarian tissue section from the Ctl group (40X). (D) A 

representative ovarian tissue section from the PHov group (40X). (E) A representative ovarian tissue section 
from the PHanov group (40X). (F) Detail of a representative ovarian cyst from the PH groups (100X). Corpus 

luteum (CL), antral follicle (AF), cyst (Cy), granulosa cells (GC), theca cells (ThC) and preantral follicles 

(PaF).  
194x190mm (300 x 300 DPI)  
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Figure 2. Effects of prenatal hyperandrogenism on liver transaminase levels and lipid content. (A) Serum 
levels of ALT and (B) AST. (C) GGT. Each column represents the mean + SEM of control (Ctl) and prenatally 
hyperandrogenized (PH) groups; a vs b p<0.05, by ANOVA test. Liver lipid content was quantified by SUDAN 

IV staining. (D) The cytoplasmic lipid droplets are shown in red, as shown in the positive control of the 
technique (arrows).  Each photo shows the detail (100X) of a representative staining of the Ctl group (E) 
and PHov (F) and PHanov groups (G). There was no evidence of cytoplasmic lipid accumulation.  (H) TG 
content in the liver. No significant differences were found between the Ctl and PH groups (p>0.05, by 

ANOVA test).  
254x190mm (300 x 300 DPI)  
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Figure 3. Effects of prenatal hyperandrogenism on liver lipid metabolism  
The graphs correspond to the mRNA abundance of the gene of interest relative to L32 mRNA levels of 

control (Ctl) and prenatally hyperandrogenized (PH) groups. L32 was validated as a reference gene using 
Cts (cycle threshold) (Control=21.76 + 0.24; PHov= 21.36 + 0.30; PHanov= 21.70 + 0.34; p=0.67) (A) 

Gene expression of Ppargamma (a vs b p<0.01), (B) Srebp (a vs b p<0.05) (C) Chrebp (a vs b p<0.05), (D) 
Acaca (a vs b p<0.01), (E) Acacb (a vs b p<0.01), (F) Fas (a vs b p<0.01), (G) Scd1 (a vs b p<0.05), (H) 

Pparalpha (a vs b p<0.01), and (I) Pgc1a (a vs b p<0.01). Each column represents the mean + SEM. 
Statistical analyses were made by ANOVA test.  

 
254x228mm (300 x 300 DPI)  

 

 

Page 31 of 35



  

 

 

Figure 4. Effects of prenatal hyperandrogenism on liver oxidant/antioxidant balance and proinflammatory 
status. The oxidant–antioxidant balance in liver tissue was evaluated by measuring the lipid peroxidation 
index (A) and the content of the antioxidant glutathione (B). Each column represents the mean + SEM. 

Different letters mean statistical significant differences (a≠b≠c, p<0.05 in both cases, by ANOVA test). (C) 
Liver PGE content was measured to evaluate the pro-inflammatory status (a≠b≠c, p<0.01 by ANOVA). (D) 

To evaluate whether PGE levels were influenced by the limiting enzyme of its synthesis, COX2 was 
measured, a vs b p<0.05, by ANOVA test. Each column represents the mean + SEM.  
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Figure 5. Prenatal hyperandrogenism and metabolic derangements. Metabolic  features evaluated in female 
offspring of control (Ctl) and prenatally hyperandrogenized (PH) groups. (A) The curve represents the mean 
growth rates of the Ctl and PH groups. Differences between growth rates were not significant (p>0.05, by 

ANOVA test). (B) Basal insulin levels, a vs b p<0.05. (C) Basal glucose levels a vs b p<0.05. (D) Blood 
samples followed by intraperitoneal injection of 2 g dextrose/kg body weight were collected at 0, 30, 60, 90 
and 120 minutes post-injection for IPGTT. (E) HOMA-IR index a vs b p<0.05. Values are mean + SEM by 

ANOVA test.  
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Figure 6. Effect of prenatal hyperandrogenism on the circulating lipid profile. (A) Serum levels of low-density 
lipoprotein cholesterol (LDL-cholesterol), (B) triglycerides, (C) total cholesterol and (D) high-density 
lipoprotein cholesterol (HDL-cholesterol). Each column represents the mean + SEM of control (Ctl) and 

prenatally hyperandrogenized (PH) groups; a vs b p<0.01 panel A; p< 0.05 panel B. Data were analyzed by 
ANOVA test.    
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Figure 7. Mediators of hepatic lipogenesis and β-oxidation. SREBP, ChREBP and PPARgamma are 
transcription factors involved in the regulation of hepatic lipogenesis. Insulin and glucose modulate SREBP 

and ChREBP, respectively. These transcription factors and PPARgamma positively regulate de novo 

lipogenesis by modulating the expression of the enzymes involved in this pathway. On the other hand, 
PPARalpha and PGC1a are positively regulators of genes involved in fatty acid oxidation. A balance between 

these processes is needed to avoid hepatic liver accumulation leading to steatosis. Insulin resistance is 
associated with an increase in lipogenesis due to an up-regulation of ChREBP, SREBP-1c and PPARgamma 

and a decrease in fatty acid oxidation due to a negative regulation on PPARalpha.  
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