50,457 research outputs found

    Echo State Networks with Self-Normalizing Activations on the Hyper-Sphere

    Get PDF
    Among the various architectures of Recurrent Neural Networks, Echo State Networks (ESNs) emerged due to their simplified and inexpensive training procedure. These networks are known to be sensitive to the setting of hyper-parameters, which critically affect their behaviour. Results show that their performance is usually maximized in a narrow region of hyper-parameter space called edge of chaos. Finding such a region requires searching in hyper-parameter space in a sensible way: hyper-parameter configurations marginally outside such a region might yield networks exhibiting fully developed chaos, hence producing unreliable computations. The performance gain due to optimizing hyper-parameters can be studied by considering the memory--nonlinearity trade-off, i.e., the fact that increasing the nonlinear behavior of the network degrades its ability to remember past inputs, and vice-versa. In this paper, we propose a model of ESNs that eliminates critical dependence on hyper-parameters, resulting in networks that provably cannot enter a chaotic regime and, at the same time, denotes nonlinear behaviour in phase space characterised by a large memory of past inputs, comparable to the one of linear networks. Our contribution is supported by experiments corroborating our theoretical findings, showing that the proposed model displays dynamics that are rich-enough to approximate many common nonlinear systems used for benchmarking

    Recurrent Neural Networks for Online Video Popularity Prediction

    Full text link
    In this paper, we address the problem of popularity prediction of online videos shared in social media. We prove that this challenging task can be approached using recently proposed deep neural network architectures. We cast the popularity prediction problem as a classification task and we aim to solve it using only visual cues extracted from videos. To that end, we propose a new method based on a Long-term Recurrent Convolutional Network (LRCN) that incorporates the sequentiality of the information in the model. Results obtained on a dataset of over 37'000 videos published on Facebook show that using our method leads to over 30% improvement in prediction performance over the traditional shallow approaches and can provide valuable insights for content creators
    • …
    corecore