32,074 research outputs found

    Tensor-Based Link Prediction in Intermittently Connected Wireless Networks

    Full text link
    Through several studies, it has been highlighted that mobility patterns in mobile networks are driven by human behaviors. This effect has been particularly observed in intermittently connected networks like DTN (Delay Tolerant Networks). Given that common social intentions generate similar human behavior, it is relevant to exploit this knowledge in the network protocols design, e.g. to identify the closeness degree between two nodes. In this paper, we propose a temporal link prediction technique for DTN which quantifies the behavior similarity between each pair of nodes and makes use of it to predict future links. Our prediction method keeps track of the spatio-temporal aspects of nodes behaviors organized as a third-order tensor that aims to records the evolution of the network topology. After collapsing the tensor information, we compute the degree of similarity for each pair of nodes using the Katz measure. This metric gives us an indication on the link occurrence between two nodes relying on their closeness. We show the efficiency of this method by applying it on three mobility traces: two real traces and one synthetic trace. Through several simulations, we demonstrate the effectiveness of the technique regarding another approach based on a similarity metric used in DTN. The validity of this method is proven when the computation of score is made in a distributed way (i.e. with local information). We attest that the tensor-based technique is effective for temporal link prediction applied to the intermittently connected networks. Furthermore, we think that this technique can go beyond the realm of DTN and we believe this can be further applied on every case of figure in which there is a need to derive the underlying social structure of a network of mobile users.Comment: 13 pages, 9 figures, 8 tables, submitted to the International Journal of Computer and Telecommunications Networking (COMNET

    Discriminative Distance-Based Network Indices with Application to Link Prediction

    Full text link
    In large networks, using the length of shortest paths as the distance measure has shortcomings. A well-studied shortcoming is that extending it to disconnected graphs and directed graphs is controversial. The second shortcoming is that a huge number of vertices may have exactly the same score. The third shortcoming is that in many applications, the distance between two vertices not only depends on the length of shortest paths, but also on the number of shortest paths. In this paper, first we develop a new distance measure between vertices of a graph that yields discriminative distance-based centrality indices. This measure is proportional to the length of shortest paths and inversely proportional to the number of shortest paths. We present algorithms for exact computation of the proposed discriminative indices. Second, we develop randomized algorithms that precisely estimate average discriminative path length and average discriminative eccentricity and show that they give (ϵ,δ)(\epsilon,\delta)-approximations of these indices. Third, we perform extensive experiments over several real-world networks from different domains. In our experiments, we first show that compared to the traditional indices, discriminative indices have usually much more discriminability. Then, we show that our randomized algorithms can very precisely estimate average discriminative path length and average discriminative eccentricity, using only few samples. Then, we show that real-world networks have usually a tiny average discriminative path length, bounded by a constant (e.g., 2). Fourth, in order to better motivate the usefulness of our proposed distance measure, we present a novel link prediction method, that uses discriminative distance to decide which vertices are more likely to form a link in future, and show its superior performance compared to the well-known existing measures

    Tracking Topology Dynamicity for Link Prediction in Intermittently Connected Wireless Networks

    Full text link
    Through several studies, it has been highlighted that mobility patterns in mobile networks are driven by human behaviors. This effect has been particularly observed in intermittently connected networks like DTN (Delay Tolerant Networks). Given that common social intentions generate similar human behavior, it is relevant to exploit this knowledge in the network protocols design, e.g. to identify the closeness degree between two nodes. In this paper, we propose a temporal link prediction technique for DTN which quantifies the behavior similarity between each pair of nodes and makes use of it to predict future links. We attest that the tensor-based technique is effective for temporal link prediction applied to the intermittently connected networks. The validity of this method is proved when the prediction is made in a distributed way (i.e. with local information) and its performance is compared to well-known link prediction metrics proposed in the literature.Comment: Published in the proceedings of the 8th International Wireless Communications and Mobile Computing Conference (IWCMC), Limassol, Cyprus, 201

    Effective and Efficient Similarity Index for Link Prediction of Complex Networks

    Get PDF
    Predictions of missing links of incomplete networks like protein-protein interaction networks or very likely but not yet existent links in evolutionary networks like friendship networks in web society can be considered as a guideline for further experiments or valuable information for web users. In this paper, we introduce a local path index to estimate the likelihood of the existence of a link between two nodes. We propose a network model with controllable density and noise strength in generating links, as well as collect data of six real networks. Extensive numerical simulations on both modeled networks and real networks demonstrated the high effectiveness and efficiency of the local path index compared with two well-known and widely used indices, the common neighbors and the Katz index. Indeed, the local path index provides competitively accurate predictions as the Katz index while requires much less CPU time and memory space, which is therefore a strong candidate for potential practical applications in data mining of huge-size networks.Comment: 8 pages, 5 figures, 3 table
    • …
    corecore