4,383 research outputs found

    Compressed Sensing in Multi-Hop Large-Scale Wireless Sensor Networks Based on Routing Topology Tomography

    Get PDF
    Data acquisition from multi-hop large-scale outdoor wireless sensor network (WSN) deployments for environmental monitoring is full of challenges. This is because of the severe resource constraints on tiny battery-operated motes (e.g., bandwidth, memory, power, and computing capacity), the data acquisition volume from large-scale WSNs, and the highly dynamic wireless link conditions in outdoor harsh communication environments. We present a novel compressed sensing approach, which can recover the sensing data at the sink with high fidelity when a very few data packets need to be collected, leading to a significant reduction of the network transmissions and thus an extension of the WSN lifetime. Interplaying with the dynamic WSN routing topology, the proposed approach is both efficient and simple to implement on the resource-constrained motes without motes' storing of any part of the random projection matrix, as opposed to other existing compressed sensing-based schemes. We further propose a systematic method via machine learning to find a suitable representation basis, for any given WSN deployment and data field, which is both sparse and incoherent with the random projection matrix in compressed sensing for data collection. We validate our approach and evaluate its performance using a real-world outdoor multihop WSN testbed deployment in situ. The results demonstrate that our approach significantly outperforms existing compressed sensing approaches by reducing data recovery errors by an order of magnitude for the entire WSN observation field while drastically reducing wireless communication costs at the same time

    Topology Discovery of Sparse Random Graphs With Few Participants

    Get PDF
    We consider the task of topology discovery of sparse random graphs using end-to-end random measurements (e.g., delay) between a subset of nodes, referred to as the participants. The rest of the nodes are hidden, and do not provide any information for topology discovery. We consider topology discovery under two routing models: (a) the participants exchange messages along the shortest paths and obtain end-to-end measurements, and (b) additionally, the participants exchange messages along the second shortest path. For scenario (a), our proposed algorithm results in a sub-linear edit-distance guarantee using a sub-linear number of uniformly selected participants. For scenario (b), we obtain a much stronger result, and show that we can achieve consistent reconstruction when a sub-linear number of uniformly selected nodes participate. This implies that accurate discovery of sparse random graphs is tractable using an extremely small number of participants. We finally obtain a lower bound on the number of participants required by any algorithm to reconstruct the original random graph up to a given edit distance. We also demonstrate that while consistent discovery is tractable for sparse random graphs using a small number of participants, in general, there are graphs which cannot be discovered by any algorithm even with a significant number of participants, and with the availability of end-to-end information along all the paths between the participants.Comment: A shorter version appears in ACM SIGMETRICS 2011. This version is scheduled to appear in J. on Random Structures and Algorithm

    Passive network tomography for erroneous networks: A network coding approach

    Full text link
    Passive network tomography uses end-to-end observations of network communication to characterize the network, for instance to estimate the network topology and to localize random or adversarial glitches. Under the setting of linear network coding this work provides a comprehensive study of passive network tomography in the presence of network (random or adversarial) glitches. To be concrete, this work is developed along two directions: 1. Tomographic upper and lower bounds (i.e., the most adverse conditions in each problem setting under which network tomography is possible, and corresponding schemes (computationally efficient, if possible) that achieve this performance) are presented for random linear network coding (RLNC). We consider RLNC designed with common randomness, i.e., the receiver knows the random code-books all nodes. (To justify this, we show an upper bound for the problem of topology estimation in networks using RLNC without common randomness.) In this setting we present the first set of algorithms that characterize the network topology exactly. Our algorithm for topology estimation with random network errors has time complexity that is polynomial in network parameters. For the problem of network error localization given the topology information, we present the first computationally tractable algorithm to localize random errors, and prove it is computationally intractable to localize adversarial errors. 2. New network coding schemes are designed that improve the tomographic performance of RLNC while maintaining the desirable low-complexity, throughput-optimal, distributed linear network coding properties of RLNC. In particular, we design network codes based on Reed-Solomon codes so that a maximal number of adversarial errors can be localized in a computationally efficient manner even without the information of network topology.Comment: 40 pages, under submission for IEEE Trans. on Information Theor

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    ROUTING TOPOLOGY RECOVERY FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Liu, Rui Ph.D., Purdue University, December 2014. Routing Topology Recovery for Wireless Sensor Networks. Major Professor: Yao Liang
    • …
    corecore