597 research outputs found

    Development of a speech recognition system for Spanish broadcast news

    Get PDF
    This paper reports on the development process of a speech recognition system for Spanish broadcast news within the MESH FP6 project. The system uses the SONIC recognizer developed at the Center for Spoken Language Research (CSLR), University of Colorado. Acoustic and language models were trained using Hub4 broadcast news data. Experiments and evaluation results are reported

    Simple and effective data augmentation for compositional generalization

    Full text link
    Compositional generalization, the ability to predict complex meanings from training on simpler sentences, poses challenges for powerful pretrained seq2seq models. In this paper, we show that data augmentation methods that sample MRs and backtranslate them can be effective for compositional generalization, but only if we sample from the right distribution. Remarkably, sampling from a uniform distribution performs almost as well as sampling from the test distribution, and greatly outperforms earlier methods that sampled from the training distribution. We further conduct experiments to investigate the reason why this happens and where the benefit of such data augmentation methods come from

    Towards a better integration of fuzzy matches in neural machine translation through data augmentation

    Get PDF
    We identify a number of aspects that can boost the performance of Neural Fuzzy Repair (NFR), an easy-to-implement method to integrate translation memory matches and neural machine translation (NMT). We explore various ways of maximising the added value of retrieved matches within the NFR paradigm for eight language combinations, using Transformer NMT systems. In particular, we test the impact of different fuzzy matching techniques, sub-word-level segmentation methods and alignment-based features on overall translation quality. Furthermore, we propose a fuzzy match combination technique that aims to maximise the coverage of source words. This is supplemented with an analysis of how translation quality is affected by input sentence length and fuzzy match score. The results show that applying a combination of the tested modifications leads to a significant increase in estimated translation quality over all baselines for all language combinations

    Towards a unified framework for sub-lexical and supra-lexical linguistic modeling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 171-178).Conversational interfaces have received much attention as a promising natural communication channel between humans and computers. A typical conversational interface consists of three major systems: speech understanding, dialog management and spoken language generation. In such a conversational interface, speech recognition as the front-end of speech understanding remains to be one of the fundamental challenges for establishing robust and effective human/computer communications. On the one hand, the speech recognition component in a conversational interface lives in a rich system environment. Diverse sources of knowledge are available and can potentially be beneficial to its robustness and accuracy. For example, the natural language understanding component can provide linguistic knowledge in syntax and semantics that helps constrain the recognition search space. On the other hand, the speech recognition component also faces the challenge of spontaneous speech, and it is important to address the casualness of speech using the knowledge sources available. For example, sub-lexical linguistic information would be very useful in providing linguistic support for previously unseen words, and dynamic reliability modeling may help improve recognition robustness for poorly articulated speech. In this thesis, we mainly focused on the integration of knowledge sources within the speech understanding system of a conversational interface. More specifically, we studied the formalization and integration of hierarchical linguistic knowledge at both the sub-lexical level and the supra-lexical level, and proposed a unified framework for integrating hierarchical linguistic knowledge in speech recognition using layered finite-state transducers (FSTs).(cont.) Within the proposed framework, we developed context-dependent hierarchical linguistic models at both sub-lexical and supra-lexical levels. FSTs were designed and constructed to encode both structure and probability constraints provided by the hierarchical linguistic models. We also studied empirically the feasibility and effectiveness of integrating hierarchical linguistic knowledge into speech recognition using the proposed framework. We found that, at the sub-lexical level, hierarchical linguistic modeling is effective in providing generic sub-word structure and probability constraints. Since such constraints are not restricted to a fixed system vocabulary, they can help the recognizer correctly identify previously unseen words. Together with the unknown word support from natural language understanding, a conversational interface would be able to deal with unknown words better, and can possibly incorporate them into the active recognition vocabulary on-the-fly. At the supra-lexical level, experimental results showed that the shallow parsing model built within the proposed layered FST framework with top-level n-gram probabilities and phrase-level context-dependent probabilities was able to reduce recognition errors, compared to a class n-gram model of the same order. However, we also found that its application can be limited by the complexity of the composed FSTs. This suggests that, with a much more complex grammar at the supra-lexical level, a proper tradeoff between tight knowledge integration and system complexity becomes more important ...by Xiaolong Mou.Ph.D

    AugCSE: contrastive sentence embedding with diverse augmentations

    Get PDF
    Data augmentation techniques have been proven useful in many applications in NLP fields. Most augmentations are task-specific, and cannot be used as a general-purpose tool. In our work, we present AugCSE, a unified framework to utilize diverse sets of data augmentations to achieve a better, general-purpose, sentence embedding model. Building upon the latest sentence embedding models, our approach uses a simple antagonistic discriminator that differentiates the augmentation types. With the finetuning objective borrowed from domain adaptation, we show that diverse augmentations, which often lead to conflicting contrastive signals, can be tamed to produce a better and more robust sentence representation. Our methods achieve state-of-the-art results on downstream transfer tasks and perform competitively on semantic textual similarity tasks, using only unsupervised data.000000000000000000000000000000000000000000000000000000010241 - University of California, Berkeleyhttps://aclanthology.org/2022.aacl-main.30/First author draf

    Domain adaptation for social localisation-based SMT: a Case study using the Trommons platform

    Get PDF
    Social localisation is a kind of community action, which matches communities and the content they need, and supports their localisation efforts. The goal of social localisation-based statistical machine translation (SL-SMT) is to support and bridge global communities exchanging any type of digital content across different languages and cultures. Trommons is an open platform maintained by The Rosetta Foundation to connect non-profit translation projects and organisations with the skills and interests of volunteer translators, where they can translate, post-edit or proofread different types of documents. Using Trommons as the experimental platform, this paper focuses on domain adaptation techniques to augment SL-SMT to facilitate translators/post-editors. Specifically, the Cross Entropy Difference algorithm is used to adapt Europarl data to the social localisation data. Experimental results on English–Spanish show that the domain adaptation techniques can significantly improve translation performance by 6.82 absolute BLEU points and 5.99 absolute TER points compared to the baseline
    corecore