6,160 research outputs found

    MaestROB: A Robotics Framework for Integrated Orchestration of Low-Level Control and High-Level Reasoning

    Full text link
    This paper describes a framework called MaestROB. It is designed to make the robots perform complex tasks with high precision by simple high-level instructions given by natural language or demonstration. To realize this, it handles a hierarchical structure by using the knowledge stored in the forms of ontology and rules for bridging among different levels of instructions. Accordingly, the framework has multiple layers of processing components; perception and actuation control at the low level, symbolic planner and Watson APIs for cognitive capabilities and semantic understanding, and orchestration of these components by a new open source robot middleware called Project Intu at its core. We show how this framework can be used in a complex scenario where multiple actors (human, a communication robot, and an industrial robot) collaborate to perform a common industrial task. Human teaches an assembly task to Pepper (a humanoid robot from SoftBank Robotics) using natural language conversation and demonstration. Our framework helps Pepper perceive the human demonstration and generate a sequence of actions for UR5 (collaborative robot arm from Universal Robots), which ultimately performs the assembly (e.g. insertion) task.Comment: IEEE International Conference on Robotics and Automation (ICRA) 2018. Video: https://www.youtube.com/watch?v=19JsdZi0TW

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    Integrating verbal and nonverbal communication in a dynamic neural field architecture for human–robot interaction

    Get PDF
    How do humans coordinate their intentions, goals and motor behaviors when performing joint action tasks? Recent experimental evidence suggests that resonance processes in the observer’s motor system are crucially involved in our ability to understand actions of others’, to infer their goals and even to comprehend their action-related language. In this paper, we present a control architecture for human–robot collaboration that exploits this close perception-action linkage as a means to achieve more natural and efficient communication grounded in sensorimotor experiences. The architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of neural populations that encode in their activation patterns goals, actions and shared task knowledge. We validate the verbal and nonverbal communication skills of the robot in a joint assembly task in which the human–robot team has to construct toy objects from their components. The experiments focus on the robot’s capacity to anticipate the user’s needs and to detect and communicate unexpected events that may occur during joint task execution.Fundação para a CiĂȘncia e a Tecnologia (FCT) - Bolsa POCI/V.5/A0119/2005 and CONC-REEQ/17/2001European Commission through the project JAST (IP-003747

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    LanPose: Language-Instructed 6D Object Pose Estimation for Robotic Assembly

    Full text link
    Comprehending natural language instructions is a critical skill for robots to cooperate effectively with humans. In this paper, we aim to learn 6D poses for roboticassembly by natural language instructions. For this purpose, Language-Instructed 6D Pose Regression Network (LanPose) is proposed to jointly predict the 6D poses of the observed object and the corresponding assembly position. Our proposed approach is based on the fusion of geometric and linguistic features, which allows us to finely integrate multi-modality input and map it to the 6D pose in SE(3) space by the cross-attention mechanism and the language-integrated 6D pose mapping module, respectively. To validate the effectiveness of our approach, an integrated robotic system is established to precisely and robustly perceive, grasp, manipulate and assemble blocks by language commands. 98.09 and 93.55 in ADD(-S)-0.1d are derived for the prediction of 6D object pose and 6D assembly pose, respectively. Both quantitative and qualitative results demonstrate the effectiveness of our proposed language-instructed 6D pose estimation methodology and its potential to enable robots to better understand and execute natural language instructions.Comment: 8 page

    Integration of advanced teleoperation technologies for control of space robots

    Get PDF
    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful

    Early Turn-taking Prediction with Spiking Neural Networks for Human Robot Collaboration

    Full text link
    Turn-taking is essential to the structure of human teamwork. Humans are typically aware of team members' intention to keep or relinquish their turn before a turn switch, where the responsibility of working on a shared task is shifted. Future co-robots are also expected to provide such competence. To that end, this paper proposes the Cognitive Turn-taking Model (CTTM), which leverages cognitive models (i.e., Spiking Neural Network) to achieve early turn-taking prediction. The CTTM framework can process multimodal human communication cues (both implicit and explicit) and predict human turn-taking intentions in an early stage. The proposed framework is tested on a simulated surgical procedure, where a robotic scrub nurse predicts the surgeon's turn-taking intention. It was found that the proposed CTTM framework outperforms the state-of-the-art turn-taking prediction algorithms by a large margin. It also outperforms humans when presented with partial observations of communication cues (i.e., less than 40% of full actions). This early prediction capability enables robots to initiate turn-taking actions at an early stage, which facilitates collaboration and increases overall efficiency.Comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA) 201
    • 

    corecore